Preliminary

October 2001

Revised October 2001

FAIRCHILD

SEMICONDUCTOR

FSLV34X245 32-Bit Bus Switch (Preliminary)

General Description

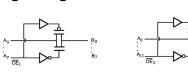
The Fairchild Switch FSLV34X245 provides 32-bits of highspeed CMOS bus switching in a standard 245 pin-out. The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

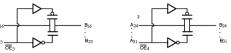
The device is organized as an 32-bit switch. When \overline{OE} is LOW, the switch is ON and Port A is connected to Port B. When OE is HIGH, the switch is OPEN and a High-Impedance state exists between the two ports.

Features

- \blacksquare 5 Ω switch connection between two ports
- Minimal propagation delay through the switch
- Low I_{CC}

Logic Diagram


- Zero bounce in flow-through mode
- Low Power-Off leakage currents
- 32-bit version of FSLV3245
- Packaged in "slim line" 80-lead package


Ordering Code:

Order Number	Package Number	Package Description
FSLV34X245QSP	MQA80A	80-Lead, QVSOP, JEDEC MO-154, 0.150" Wide

Connection Diagram

NC -	1	80 - Vcc
A.0 -	2	79 OE1
A	3	78 B0
A2 -	4	77 B1
۸3 -	5	76 B2
٨	6	75 - B ₃
A5 -	7	74 B4
۰ ₆ -	8	73 - B5
N ₇ -	9	72 B ₆
D -	10	71 B ₇
с -	11	70 - Vcc
- 8	12	69 - OE ₂
9 -	13	68 — B ₈
10 -	14	67 — B ₉
1 -	15	66 — B ₁₀
2 -	16	65 — B ₁₁
3 -	17	64 B ₁₂
4 -	18	63 - B ₁₃
15 -	19	62 B ₁₄
D -	20	61 B ₁₅
с -	21	60 - V _{CC}
6 -	22	59 OE3
, -	23	58 B ₁₆
-	24	57 B ₁₇
9 -	25	56 - B ₁₈
0 -	26	55 B 19
1 -	27	54 - B ₂₀
2 -	28	53 — B ₂₁
3 -	29	52 - B ₂₂
D -	30	51 - B ₂₃
	31	50 - Vcc
4 -	32	49 - OE4
5 =	33	48 — B ₂₄
6 -	34	47 — B ₂₅
7 -	35	46 - B ₂₆
28 -	36	45 — B ₂₇
9 -	37	44 — B ₂₈
0 -	38	43 - B ₂₉
31 -	39	42 — B ₃₀
D -	40	41 — B ₃₁

Pin Descriptions

Pin Name	Description
OE	Bus Switch Enable
A	Bus A
В	Bus B
NC	No Connect

Truth Table

Input OE	Function
L	Connect
Н	Disconnect

FSLV34X245

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Switch Voltage (V _S)	-0.5V to +4.6V
DC Input Voltage (VIN) (Note 2)	-0.5V to +4.6V
DC Input Diode Current (I _{IK}) $V_{IN} < 0V$	–50 mA
DC Output (I _{OUT}) Sink Current	128 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	+/- 100 mA
Storage Temperature Range (T _{STG})	–65°C to +150 $^\circ\text{C}$

Recommended Operating Conditions (Note 3)

Power Supply Operating (V _{CC})	3.0V to 3.6V
Control Input Voltage	0V to 3.6V
Switch Input Voltage	0V to 3.6V
Output Voltage (V _{OUT})	0V to 3.6V
Input Rise and Fall Time (t _r , t _f)	
Switch Control Input	0 ns/V to 4 ns/V
Switch I/O	0 ns/V to DC

Free Air Operating Temperature (T_A) -40 °C to +85 °C

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

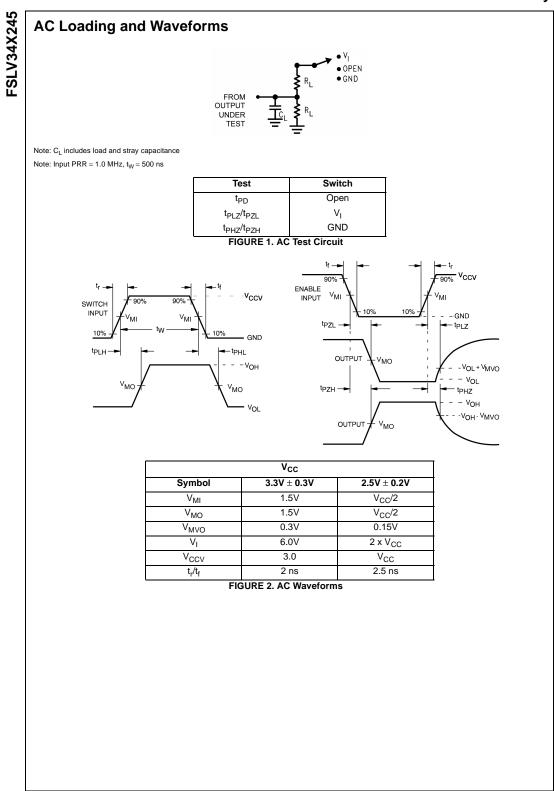
DC Electrical Characteristics

		v _{cc}	$T_A = -40 \ ^\circ C \ to \ +85 \ ^\circ C$				
Symbol	Parameter	(V)	Min	Typ (Note 4)	Max	Units	Conditions
V _{IK}	Clamp Diode Voltage	3.0			-1.2	V	I _{IN} = -18 mA
V _{IH}	HIGH Level Input Voltage	2.7 - 3.6	2.0			v	
		2.3 - 2.7	1.7			v	
V _{IL}	LOW Level Input Voltage	2.7 - 3.6			0.8	v	
		2.3 - 2.7			0.7	v	
l _l	Input Leakage Current	3.6			±1.0	μΑ	$0 \le V_{IN} \le 3.6V$
		0			10	μΑ	$V_{IN} = 3.6V$
I _{OFF}	OFF-STATE Leakage Current	0			±10.0	μΑ	$0 \le A, B \le V_{CC}$
I _{OZ}	OFF-STATE Leakage	3.6			±1	μΑ	$0.0V \le A, B \le 3.6V$
R _{ON}	Switch On Resistance	3.0		5	7	Ω	$V_{IN} = 0V$, $I_{IN} = 64 \text{ mA}$
	(Note 5)	3.0		5	7	Ω	$V_{IN} = 0V, I_{IN} = 30 \text{ mA}$
		3.0		10	15	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$
		3.0			20	Ω	$V_{IN} = 3.0V, I_{IN} = 15 \text{ mA}$
		2.3		5	8	Ω	V _{IN} = 0.0V, I _{IN} = 64 mA
		2.3		5	8	Ω	$V_{IN} = 0.0V, I_{IN} = 30 \text{ mA}$
		2.3		10	15	Ω	V _{IN} = 1.7V, I _{IN} = 15 mA
		2.3			20	Ω	V _{IN} = 2.3V, I _{IN} = 15 mA
I _{CC}	Quiescent Supply Current	3.6			3	μΑ	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$
ΔI_{CC}	Increase in I _{CC} per Input	3.6			300	μΑ	One Input at 3.0V
							Other Inputs at V _{CC} or GND

Note 4: Typical values are at V_{CC} = 3.3V and T_A = +25 $^{\circ}C$

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

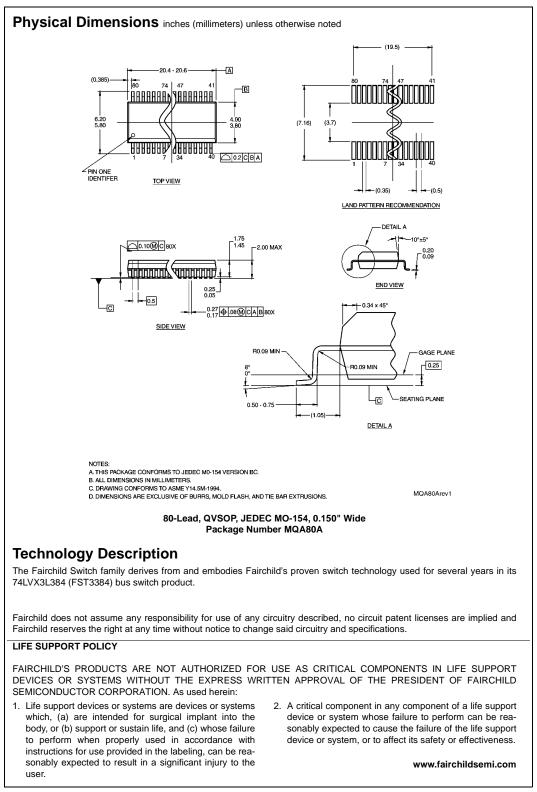
Preliminary


	Parameter	T _A = -40°C to +85°C RU = RD = 500Ω						
Symbol		$V_{CC} = 3.3 \pm 3.0 V$ $C_L = 50 \text{ pF}$		$V_{CC} = 2.5V \pm 0.2V$ $C_L = 30 \ pF$		Units	Conditions	Figure Number
		Min	Max	Min	Max			
t _{PHL} , t _{PLH}	Propagation Delay Bus to Bus (Note 6)		0.25		0.15	ns	V _I = OPEN	Figures 1, 2
t _{PZH} , t _{PZL}	Output Enable Time	1.0	4.5	1.0	4.8	ns	$\label{eq:VCC} \begin{split} &V_{CC}=3.3V, \ V_{I}=6V \ \text{for } t_{PZL} \\ &V_{I}=GND \ \text{for } t_{PZH} \\ &V_{CC}=2.5V, \ V_{I}=2 \ x \ V_{CC} \ \text{for } t_{PZL} \\ &V_{I}=GND \ \text{for } t_{PZH} \end{split}$	Figures 1, 2
t _{PHZ} , t _{PLZ}	Output Disable Time	1.0	4.5	1.0	4.8	ns	$\label{eq:VCC} \begin{array}{l} V_{CC}=3.3V, \ V_{I}=6V \ \text{for} \ t_{PLZ} \\ V_{I}=GND \ \text{for} \ t_{PHZ} \\ V_{CC}=2.5V, \ V_{I}=2 \ x \ V_{CC} \ \text{for} \ t_{PLZ} \\ V_{I}=GND \ \text{for} \ t_{PHZ} \end{array}$	Figures 1, 2

Note 6: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 7)

Symbol Parameter		Тур	Max	Units	Conditions	
C _{IN}	Control Pin Input Capacitance	3	6	pF	V _{CC} = 3.3V	
CI/O OFF	Input/Output Capacitance "OFF - State"	7	14	pF	$V_{CC}, \overline{OE} = 3.3V$	


Note 7: $T_A = +25^{\circ}C$, f = 1 Mhz, Capacitance is characterized but not tested.

www.fairchildsemi.com

Preliminary

FSLV34X245 32-Bit Bus Switch (Preliminary)

