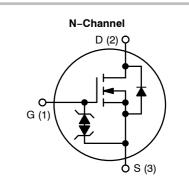
N-Channel Power MOSFET 500 V, 3.3 Ω

Features

- Low ON Resistance
- Low Gate Charge
- 100% Avalanche Tested

Drain-to-Source Voltage

• These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


V_{DSS}

ON Semiconductor®

http://onsemi.com

V _{DSS}	R _{DS(on)} (MAX) @ 1.15 A
500 V	3.3 Ω

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted) Rating Symbol Value Unit

Continuous Drain Current $R_{\theta JC}$	ID	2.6	Α
Continuous Drain Current $R_{\theta JC}$, $T_A = 100^{\circ}C$	۱ _D	1.7	А
Pulsed Drain Current, V_{GS} @ 10 V	I _{DM}	10	Α
Power Dissipation $R_{\theta JC}$	PD	58	W
Gate-to-Source Voltage	V _{GS}	±30	V
Single Pulse Avalanche Energy, $I_D = 2.6 A$	E _{AS}	120	mJ
ESD (HBM) (JESD22-A114)	V _{esd}	2000	V
Peak Diode Recovery	dv/dt	4.5 (Note 1)	V/ns
Continuous Source Current (Body Diode)	۱ _S	2.6	A
Maximum Temperature for Soldering Leads	ΤL	260	°C
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 $1. \ \ I_D \ \le \ 2.6 \ A, \ di/dt \le 200 \ A/\mu s, \ V_{DD} \le BV_{DSS}, \ T_J \le 150^\circ C.$

MARKING AND ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

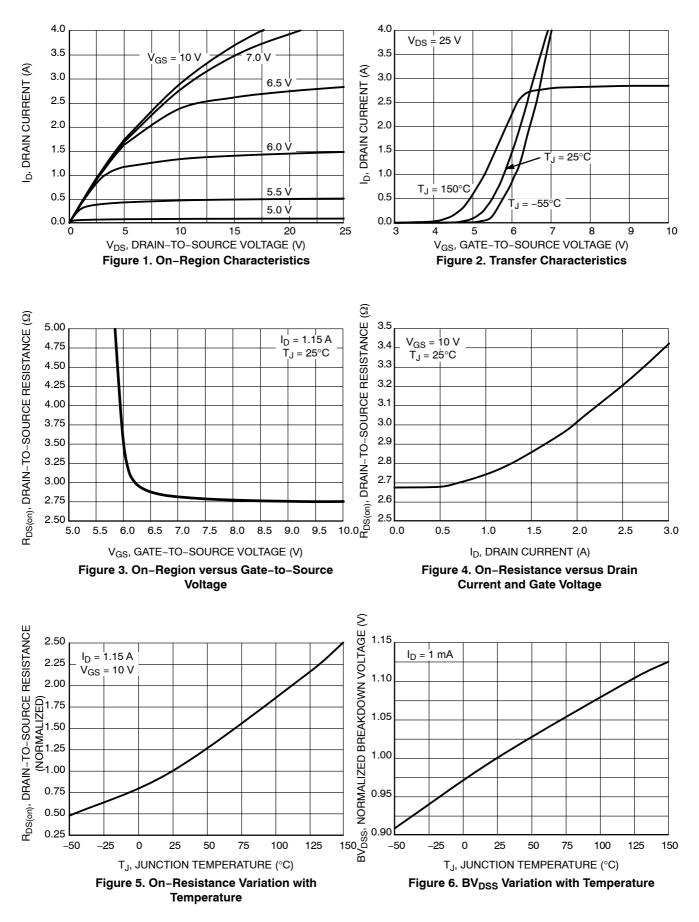
V

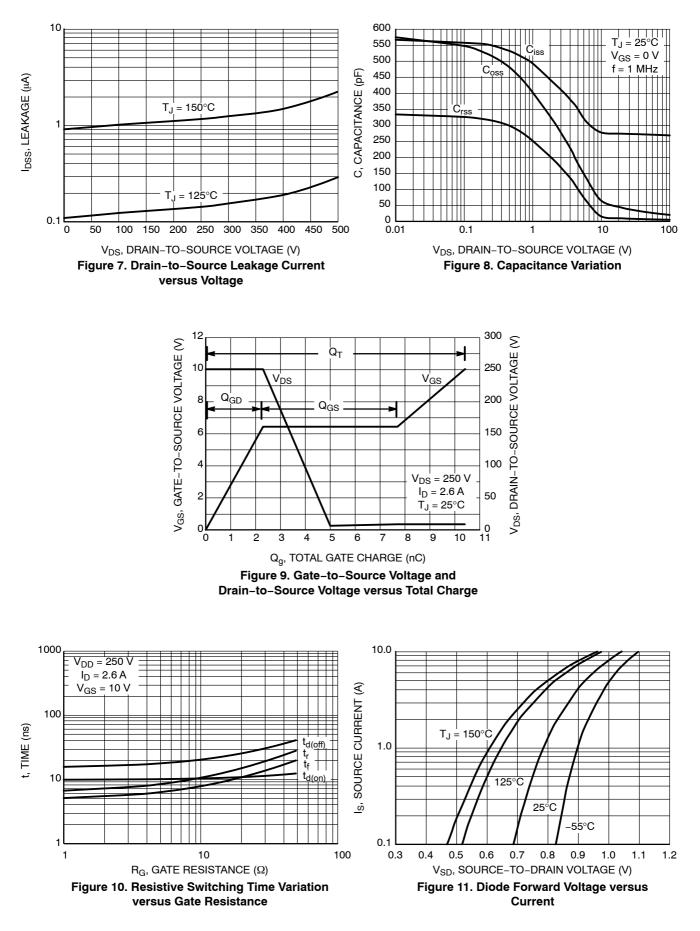
500

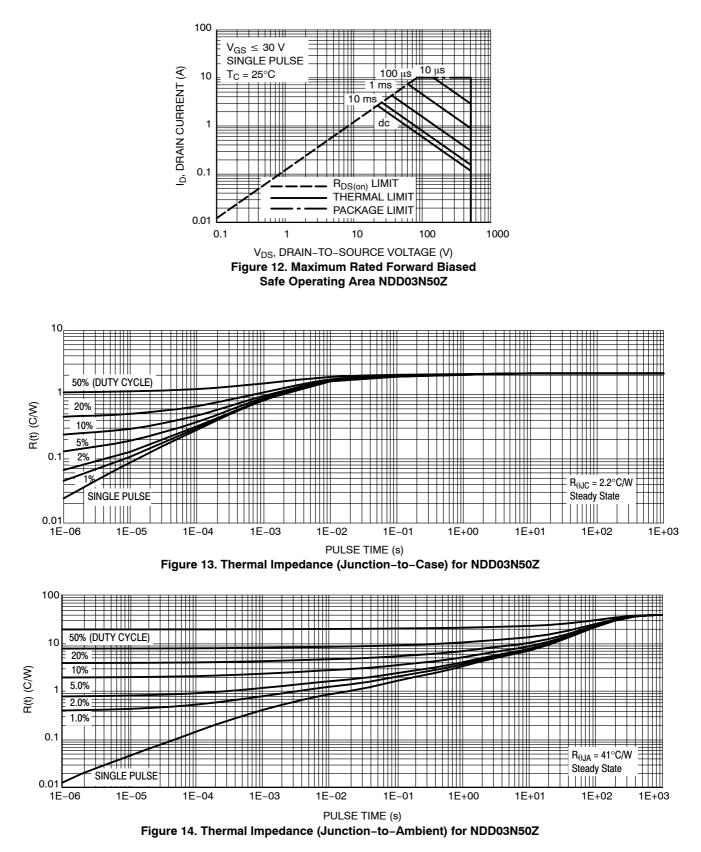
THERMAL RESISTANCE

Parameter		Symbol	Value	Unit
Junction-to-Case (Drain)	NDD03N50Z	$R_{\theta JC}$	2.2	°C/W
Junction-to-Ambient Steady State	(Note 3) NDD03N50Z (Note 2) NDD03N50Z-1	R_{\thetaJA}	41 80	

2. Insertion mounted

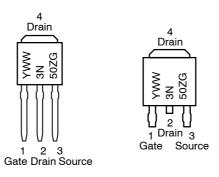

3. Surface mounted on FR4 board using 1" sq. pad size, (Cu area = 1.127 in sq [2 oz] including traces).

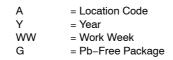

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							•
Drain-to-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0 V, I _D = 1 mA		500			V
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/\Delta T_{J}$	Reference to 25° C, I _D = 1 mA			0.6		V/°C
Drain-to-Source Leakage Current	I _{DSS}		25°C			1	μΑ
		$V_{DS} = 500 \text{ V}, V_{GS} = 0 \text{ V}$	150°C			50	
Gate-to-Source Forward Leakage	I _{GSS}	$V_{GS} = \pm 20 \text{ V}$				±10	μΑ
ON CHARACTERISTICS (Note 4)							-
Static Drain-to-Source On-Resistance	R _{DS(on)}	V_{GS} = 10 V, I _D = 1.15 /	٩		2.8	3.3	Ω
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 50 \ \mu A$	A Contraction	3.0		4.5	V
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D = 1.15 A			1.8		S
DYNAMIC CHARACTERISTICS					•		
Input Capacitance	C _{iss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			274		pF
Output Capacitance	C _{oss}				38		
Reverse Transfer Capacitance	C _{rss}				8		
Total Gate Charge	Qg				10		nC
Gate-to-Source Charge	Q _{gs}	V _{DD} = 250 V, I _D = 2.6 A	۹,		2.3		1
Gate-to-Drain ("Miller") Charge	Q _{gd}	$V_{GS} = 10 V$			5.5		
Plateau Voltage	V _{GP}				6.4		V
Gate Resistance	Rg				4.5		Ω
RESISTIVE SWITCHING CHARACTER	ISTICS						
Turn-On Delay Time	t _{d(on)}				9		ns
Rise Time	t _r	V_{DD} = 250 V, I_D = 2.6 A, V_{GS} = 10 V, R_G = 5 Ω			7		1
Turn-Off Delay Time	t _{d(off)}				15		7
Fall Time	t _f				7		1
SOURCE-DRAIN DIODE CHARACTER	ISTICS (T _C =	25°C unless otherwise noted)			-		-
Diode Forward Voltage	V _{SD}	I _S = 2.6 A, V _{GS} = 0 V				1.6	V

Diode Forward Voltage	V _{SD}	$I_{\rm S}$ = 2.6 A, $V_{\rm GS}$ = 0 V		1.6	V
Reverse Recovery Time	t _{rr}	V_{GS} = 0 V, V_{DD} = 30 V	240		ns
Reverse Recovery Charge	Q _{rr}	$I_{\rm S}$ = 2.6 A, di/dt = 100 A/µs	0.7		μC

4. Pulse Width \leq 380 μ s, Duty Cycle \leq 2%.

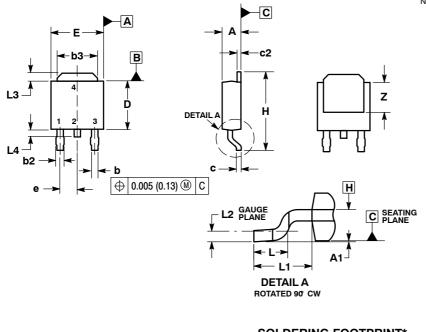



ORDERING INFORMATION

Order Number	Package	Shipping [†]
NDD03N50Z-1G	IPAK (Pb-Free)	75 Units / Rail
NDD03N50ZT4G	DPAK (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAMS



PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE) CASE 369AA-01

ISSUE B

-5.80

0.228

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- PLANE H.

	INC	HES MILLIMETERS			
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
c	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
ш	0.250	0.265	6.35	6.73	
e	0.090 BSC		2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108 REF 0.020 BSC		2.74	REF	
L2			0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Ζ	0.155		3.93		

SOLDERING FOOTPRINT*

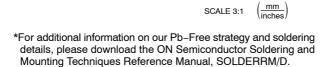
2.58 0.102 3.00

0.118

1.60

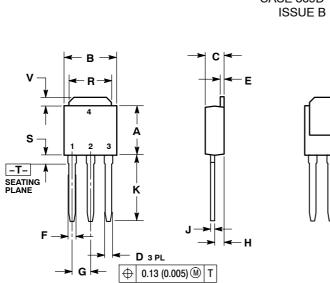
0.063

SCALE 3:1


6.20

0.244

STYLE 2: PIN 1. GATE 2. DRAIN


6.17

0.243

^{3.} SOURCE 4. DRAIN

PACKAGE DIMENSIONS

IPAK CASE 369D-01 ISSUE B

Ζ

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI V14 5M 1092

ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES MILLIN		IETERS	
DIM	MIN MAX		MIN	MAX
Α	0.235	0.245	5.97	6.35
в	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29 BSC	
н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
к	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
V	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2: PIN 1. GATE

DRAIN
 SOURCE

4. DRAIN

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use patent solut. Cwas negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative