TMC2250A

Matrix Multiplier
 12×10 bit, 50 MHz

Features

- Four user-selectable filtering and transformation functions:
- Triple dot product (3×3) matrix multiply
- Cascadeable 9-tap systolic FIR filter
- Cascadeable 3×3-pixel image convolver
- Cascadeable 4×2-pixel image convolver
- 50 MHz (20ns) pipelined throughput
- 12-bit input and output data, 10-bit coefficients
- 6-bit cascade input and output ports in all filter modes
- Onboard coefficient storage, with three-cycle updating of all nine coefficients

Description

The TMC2250A is a flexible high-performance nine-multiplier array VLSI circuit which can execute a cascadeable 9-tap FIR filter, a cascadeable 4×2 or 3×3-pixel image convolution, or a 3×3 color space conversion. All configurations offer throughput at up to the maximum guaranteed 50 MHz clock rate with 12 -bit data and 10 -bit coefficients. All inputs and outputs are registered on the rising edges of the clock.

The 3×3 matrix multiply or color conversion configuration can perform video standard conversion (YIQ or YUV to RGB, etc.) or three-dimensional perspective translation at real-time video rates.

The 9-tap FIR filter configuration, useful in Video, Telecommunications, and Signal Processing, features a 16-bit cascade input to allow construction of longer filters.

Applications

- Image filtering and manipulation
- Video effects generation
- Video standards conversion and encoding/decoding
- Three-dimensional image manipulation
- Medical image processing
- Edge detection for object recognition
- FIR filtering for communications systems

The cascadeable 3×3 and 4×2-pixel image convolver functions allow the user to perform numerous image processing functions, including static filters and edge detectors. The 16-bit cascade input port facilitates two-chip 50 MHz cubic convolution (4 x 4-pixel kernel).

The TMC2250A is fabricated in a sub-micron CMOS process and operates at clock speeds of up to 50 MHz over the full commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ temperature and supply voltage ranges. It is available in 120-pin Plastic Pin Grid Array (PPGA) packages, 120-lead Ceramic Pin Grid Array package (CPGA), 120-lead PQFP to PPGA package (MPGA) and 120-lead Plastic Quad FlatPack (PQFP). All input and output signals are TTL compatible.

Functional Description

The TMC2250A is a nine-multiplier array with the internal bus structure and summing adders needed to implement a 3×3 matrix multiplier (triple dot product) a cascadeable 9-tap FIR filter, a 3×3-pixel convolver, or a 4×2-pixel convolver all in one monolithic circuit. With a 50 MHz guaranteed maximum clock rate, this device offers video and imaging system designers a single-chip solution to numerous common image and signal-processing problems.

The three data input ports (A, B, C) accept 12-bit two's complement integer data, which is also the format for the output ports ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) in the matrix multiply mode (Mode 00). In the filter configurations (Modes 01, 10, and 11) the cascade ports assume 12-bit integer, 4-bit fractional two's complement data on both input and output. The coefficient input ports (KA, KB, KC) are always 10 -bit two's complement fractional. Table 1 details the bit weighting of the input and output data in all configurations.

Operating Modes

The TMC2250A can implement four different digital filter architectures. Upon selection of the desired function by the user (MODE_{1-0}), the device reconfigures its internal data paths and input and output buses appropriately. The output ports (XC, YC and ZC) are configured in all filter modes a 16-bit Cascade In and Cascade Out ports so that multiple devices can be connected to build larger filters. These modes are described individually below. The I/O function configurations for all four modes are shown in Table 1.

Definitions

The calculations performed by the TMC2250A in each mode are also shown below, utilizing the following notation:

A(1), B(5), C(2), CASIN(3)
Indicates the data word presented to that input port during the specified clock rising edge(x). Applies to all input ports $\mathrm{A}_{11-0}, \mathrm{~B}_{11-0}, \mathrm{C}_{11-0}$, and CASIN ${ }_{15-0}$.

KA1(1), KB3(4)
Indicates coefficient data stored in the specified one of the nine onboard coefficient registers KA1 through KC 3 , as shown in the block diagram for that mode, input during or before the specified clock rising edge (x).

$X(1), Y(4), Z(6)$, CASOUT (6)

Indicated data available at that output port $t_{D O}$ after that specified clock rising edge (x . Applies to all output ports $\mathrm{X}_{11-0}, \mathrm{Y}_{11-0}, \mathrm{Z}_{11-0}$, and CASOUT ${ }_{15-0}$.

Numeric Format

Table 2 shows the binary weightings of the input and output ports of the TMC2250A. Although the internal sums of products could grow to 23 bits, in the matrix multiply mode (Mode 00) the outputs X, Y and Z are rounded to yield 12 -bit integer words. Thus the output format is identical to the input data format. In the filter configurations (Modes 01, 10, and 11) the cascade output is always half-LSB rounded to 16 bits, specifically 12 integer bits and 4 fractional guard bits, with no overflow "headroom". The user is of course free to half-LSB round the output word to any size less than 16 bits by forcing a 1 into the bit position of the cascade input immediately below the desired LSB. In all modes, bit weighting is easily adjusted if desired by applying the same scaling correction factor to both input and output data words. If the coefficients are rescaled, the relative weightings of the CASIN and CASOUT ports will differ accordingly.

Data Overflow

As shown in Table 2, the TMC2250A's matched input and output data formats accommodate 0 dB (unity) gain. Therefore, the user must be aware of input conditions that could lead to numeric overflow. Maximum input data and coefficient word sizes must be taken into account with the specific algorithm performed to ensure that no overflow occurs.

Table 1. Data Port Formatting by Mode

Mode	Inputs						Inputs/Output		Outputs		
	A_{11-0}	B_{11-0}	C_{11-0}	KA900	KB9-0	KC9-0	XC ${ }_{11-0}$	YC_{11-8}	Y_{7-4}	YC3-0	ZC_{11-0}
00	A_{11-0}	B_{11-0}	C_{11-0}	KA ${ }_{\text {g-0 }}$	KB ${ }_{9-0}$	KC9-0	X_{11-0}	Y_{11-8}	Y_{7-4}	Y_{3-0}	Z_{11-0}
01	A_{11-0}	B_{11-0}	NC	KA ${ }_{\text {g-0 }}$	KB9-0	KC9-0	CASIN_{15-4}	CASIN_{3-0}	NC	CASOUT_{3-0}	CASOUT_{15-4}
10	A_{11-0}	B_{11-0}	C_{11-0}	KA_{9-0}	KB9-0	KC9-0	CASIN_{15-4}	CASIN_{3-0}	NC	CASOUT_{3-0}	CASOUT_{15-4}
11	A_{11-0}	B_{11-0}	NC	$K A_{9-0}$	KB9-0	KC9-0	CASIN_{15-4}	CASIN_{3-0}	NC	CASOUT_{3-0}	CASOUT_{15-4}

Table 2. Bit Weightings for Input and Output Data Words

Bit Weights	2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	2^{-1}	2^{-2}	2^{-3}	$2^{-4} 2^{-5} 2^{-6} 2^{-7} 2^{-8} 2^{-9}$
Inputs																
All Modes Data A, B, C	$-l_{11}$		I_{9}	I_{8}	I_{7}	I_{6}	I_{5}	I_{4}	I_{3}	I_{2}	I_{1}	I_{0}				
Coefficients KA, KB, KC												$-K_{9}$	K_{8}	K_{7}	K_{6}	
Modes 01, 10, 11 CASIN	$-\mathrm{Cl}_{15}$	Cl_{14}	Cl_{13}	Cl_{12}	Cl_{11}	Cl_{10}	Cl_{9}	Cl_{8}	Cl_{7}	Cl_{6}	Cl_{5}	Cl_{4}	Cl_{3}	Cl_{2}	Cl_{1}	Cl_{0}
Internal Sum	X_{20}	X_{19}	X_{18}	X_{17}	X_{16}	X_{15}	X_{14}	X_{13}	X_{12}	X_{11}	X_{10}	X_{9}	. X_{8}	X_{7}	X_{6}	$x_{5} \quad X_{4} x_{3} \quad X_{2} \quad X_{1} \quad x_{0}$
Outputs																
$\begin{aligned} & \text { Mode } 00 \\ & \text { X, Y, Z } \end{aligned}$	$-\mathrm{O}_{11}$	O_{10}	O_{9}	O_{8}	O_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{0}				
Modes 01,	-	CO_{1}	CO_{1}	CO_{1}	CO_{1}	CO_{1}	CO	CO	CO	CO	CO	CO_{4}	CO	CO	CO	CO
10, 11 CASOUT	CO_{15}	4	3	2	1	0	9	8	7	6	5		3	2	1	0

Note: A minus sign indicates a two's complement sign bit.

Pin Assignments

120 Pin Plastic Quad Flat Pack (MQFP), KE Package

Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	XC6	31	ZC6	61	KA_{1}	91	B5
2	XC5	32	ZC_{7}	62	KA_{2}	92	B6
3	XC4	33	ZC8	63	KA_{3}	93	B7
4	XC3	34	GND	64	KA4	94	B8
5	XC 2	35	ZC9	65	KA5	95	B9
6	XC 1	36	ZC_{10}	66	KA6	96	B10
7	XC0	37	ZC_{11}	67	KA_{7}	97	B11
8	GND	38	KC0	68	KA8	98	C0
9	YC11	39	KC_{1}	69	KA9	99	C_{1}
10	YC 10	40	KC_{2}	70	CWE_{1}	100	C_{2}
11	YC9	41	KC3	71	CWE 0	101	C_{3}
12	VDD	42	GND	72	GND	102	VDD
13	YC8	43	KC4	73	A_{0}	103	C4
14	Y_{7}	44	KC5	74	A_{1}	104	C_{5}
15	Y6	45	KC6	75	A_{2}	105	C6
16	GND	46	VDD	76	A_{3}	106	GND
17	Y5	47	KC_{7}	77	A4	107	C_{7}
18	Y4	48	KC8	78	A_{5}	108	C8
19	YC0	49	KC9	79	A_{6}	109	C9
20	VDD	50	KB0	80	A_{7}	110	C_{10}
21	YC_{1}	51	KB1	81	A8	111	C_{11}
22	YC2	52	KB2	82	A9	112	MODE ${ }_{1}$
23	YC3	53	KB3	83	A_{10}	113	MODE0
24	GND	54	KB4	84	A_{11}	114	GND
25	ZC0	55	KB5	85	B0	115	XC 11
26	ZC_{1}	56	KB6	86	B1	116	XC 10
27	ZC_{2}	57	KB7	87	B2	117	XC9
28	ZC_{3}	58	KB8	88	CLK	118	VDD
29	ZC4	59	KB9	89	B3	119	XC8
30	ZC5	60	KA0	90	B4	120	XC_{7}

Pin Assignments (continued)
120 Pin Plastic Pin Grid Array, H5 Package and 120 Pin Ceramic Pin Grid Array, G1 Package and 120 Pin Plastic Quad Flatpack to 120-Pin Pin Grid Array (MPGA)

Pin	Name	Pin	Name	Pin	Name	Pin	Name
A1	XC_{7}	C5	GND	G11	A_{3}	L10	KB8
A2	XC_{9}	C6	C_{10}	G12	A_{2}	L11	KA1
A3	XC ${ }_{10}$	C7	GND	G13	A_{3}	L12	KA_{5}
A4	MODE_{0}	C8	VDD	H1	Y4	L13	KA6
A5	C_{11}	C9	C0	H2	YC0	M1	ZC_{2}
A6	C_{8}	C10	B8	H3	VDD	M2	ZC_{7}
A7	C_{7}	C11	B5	H11	GND	M3	ZC9
A8	C_{5}	C12	B3	H12	A0	M4	ZC11
A9	C_{3}	C13	B1	H13	A_{1}	M5	KC_{2}
A10	C_{1}	D1	YC_{11}	J1	YC_{1}	M6	KC 4
A11	B_{10}	D2	XC0	J2	YC 2	M7	KC6
A12	B_{7}	D3	XC0	J3	GND	M8	KC9
A13	B_{4}	D11	CLK	J11	KA_{8}	M9	KB2
B1	XC_{4}	D12	B0	J12	CWE_{1}	M10	KB5
B2	XC_{5}	D13	A_{10}	J13	CWE0	M11	KB9
B3	XC8	E1	YC9	K1	YC3	M12	KA2
B4	XC 11	E2	YC_{10}	K2	ZC_{0}	M13	KA_{3}
B5	MODE_{1}	E3	GND	K3	ZC3	N1	ZC5
B6	C_{9}	E11	A_{11}	K11	KA4	N2	ZC8
B7	C_{6}	E12	A9	K12	KA_{7}	N3	ZC_{10}
B8	C_{4}	E13	A_{8}	K13	KA9	N4	KC_{1}
B9	C_{2}	F1	Y7	L1	ZC_{1}	N5	KC_{3}
B10	B_{11}	F2	YC8	L2	ZC4	N6	KC5
B11	B9	F3	VDD	L3	ZC6	N7	KC_{7}
B12	B_{6}	F11	A_{7}	L4	GND	N8	KC8
B13	B_{2}	F12	A6	L5	KC0	N9	KB1
C1	XC_{1}	F13	A_{5}	L6	GND	N10	KB3
C2	XC_{2}	G1	Y_{5}	L7	VDD	N11	KB6
C3	XC_{6}	G2	Y6	L8	KB0	N12	KB7
C4	$\mathrm{V}_{\text {DD }}$	G3	GND	L9	KB4	N13	KA0

Pin Descriptions

Pin Name	Pin Nu	umber	Function	Pin Description
	CPGA/PPGA/ MPGA	MQFP		
Power				
V_{DD}	$\begin{gathered} \mathrm{F} 3, \mathrm{H} 3, \mathrm{~L} 7, \mathrm{C} 8, \\ \mathrm{C} 4 \end{gathered}$	$\begin{gathered} \hline 12,20,46, \\ 102,118 \end{gathered}$	Supply Voltage	The TMC2250A operates from a single +5 V supply. All pins must be connected.
GND	$\begin{gathered} \text { E3, G3, J3, L4, } \\ \text { L6, H11, C7, } \\ \text { C5 } \end{gathered}$	$\begin{gathered} 8,16,24,34 \\ 42,72,106 \\ 114 \end{gathered}$	Ground	The TMC2250A operates from a single +5 V supply. All pins must be connected.
Clock				
CLK	D11	88	System Clock	The TMC2250A operates from a single system clock input. All timing specifications are referenced to the rising edge of clock.
Controls				
$\mathrm{MODE}_{1,0}$	B4, A4	112, 113	Mode Control	The TMC2250A will switch to the configuration selected by the user (as shown in Table 3) on the next clock. This registered control is usually static; however, should the user wish to switch between modes, the internal pipeline latencies of the device must be taken into account. Valid data will not be available at the outputs in the new configuration until enough clocks in the new mode have passed to flush the internal registers.
$\mathrm{CWE}_{1,0}$	J12, J13	70, 71	Coefficient Write Enable	Data presented to the coefficient input ports (KA, KB, and KC) will update three of the internal coefficient storage registers, as indicated by the simultaneous Coefficient Write Enable select, on the next clock. See Table 4 and the Functional Block Diagram.
Input/Output				
A ${ }_{11-0}$	$\begin{gathered} \text { E11, D13, E12, } \\ \text { E13, F11, F12, } \\ \text { F13, G13, } \\ \text { G11, G12, } \\ \text { H13, H12 } \end{gathered}$	$\begin{aligned} & 84,83,82,81, \\ & 80,79,78,77, \\ & 76,75,74,73 \end{aligned}$	Data Input A	Data presented to the 12-bit registered data input ports A, B, and C are latched into the multiplier input registers for the currently selected configuration (Table 3). In all modes except Mode 00, new data are internally right-shifted to the next filter tap on each rising edge of CLK.
B_{11-0}	$\begin{gathered} \mathrm{B} 10, \mathrm{~A} 11, \mathrm{~B} 11, \\ \mathrm{C} 10, \mathrm{~A} 12, \mathrm{~B} 12, \\ \text { C11, A13, } \\ \text { C12, B13, } \\ \text { C13, D12 } \end{gathered}$	$\begin{aligned} & 97,96,95,94, \\ & 93,92,91,90, \\ & 89,87,86,85 \end{aligned}$	Data Input B	
C_{11-0}	$\begin{gathered} \text { A5, C6, B6, A6, } \\ \text { A7, B7, A8, B8, } \\ \text { A9, B9, A10, } \\ \text { C9 } \end{gathered}$	111,110 109,108, 107,105, 104,103, $101,100,99$ 98	Data Input C	

Pin Descriptions (continued)

Pin Name	Pin Number		Function	Pin Description
	CPGA/PPGA/ MPGA	MQFP		
KA ${ }_{9-0}$	$\begin{gathered} \text { K13, J11, K12, } \\ \text { L13, L12, K11, } \\ \text { M13, M12, } \\ \text { L11, N13 } \end{gathered}$	$\begin{gathered} \hline 69,68,67,66, \\ 65,64,63,62, \\ 61,60 \end{gathered}$	Coefficient Input A1, A2, A3	Data presented to the 10-bit registered coefficient input ports KA, KB and KC are latched three at a time into the internal coefficient storage register set indicated by the Coefficient Write Enable $\mathrm{CWE}_{1,0}$ on the next clock, as shown in Table 4.
KB_{9-0}	M11, L10, N12, N11, M10, L9, N10, M9, N9, L8	$\begin{gathered} 59,58,57,56, \\ 55,54,53,52, \\ 51,50 \end{gathered}$	Coefficient Input B1, B2, B3	
KC_{9-0}	$\begin{gathered} \text { M8, N8, N7, } \\ \text { M7, N6, M6, } \\ \text { N5, M5, N4, L5 } \\ \hline \end{gathered}$	$\begin{gathered} 49,48,47,45, \\ 44,43,41,40 \\ 39,38 \end{gathered}$	Coefficient Input B1, B2, B3	
XC ${ }_{11-0}$	B4, A3, A2, B3, A1, C3, B2, B1, D3, C2, C1, D2	115,116, 117,119, $120,1,2,3,4$, $5,6,7$	$\begin{aligned} & \text { CASIN }_{15-4} / \\ & \text { Output X } \end{aligned}$	In all modes except Mode 00, the x port and four bits of the Y output port are reconfigured as the 16-bit registered Cascade Input port CASIN ${ }_{15-0}$. Data presented to this input will be added to the weighted sums of the data words which were presented to the input ports (A, B and C). In the matrix multiply mode, data are available at the 12-bit registered output ports X, Y AND $Z \mathrm{t}_{\mathrm{DO}}$ after every clock. These ports are reconfigured in the filtering modes as 16-bit Cascade Input and Output ports.CASOUT ${ }_{15-0}$ In all modes except Mode 00, the Z port and four bits of the Y output port are reconfigured as the 16 -bit registered Cascade Output port CASOUT ${ }_{15-0}$.
YC_{11-8}	D1, E2, E1, F2	9, 10, 11, 13	$\begin{aligned} & \text { CASIN }_{3-0} / \\ & \text { Output } \text { Y }_{11-0} \end{aligned}$	
Y_{7-4}	F1, G2, G1, H1	14, 15, 17, 18	Output $_{7-4}$ only	
YC3-0	K1, J2, J1, H2	23, 22, 21, 19	$\begin{aligned} & \text { CASOUT }_{3-0} \\ & \text { Output } Y_{3-0} \end{aligned}$	
ZC ${ }_{11-0}$	$\begin{aligned} & \text { M4, N3, M3, } \\ & \text { N2, M2, L3, } \\ & \text { N1, L2, K3, } \\ & \text { M1, L1, K2 } \end{aligned}$	$\begin{aligned} & 37,36,35,33, \\ & 32,31,30,29, \\ & 28,27,26,25 \end{aligned}$	$\begin{aligned} & \text { CASOUT }_{15-4} / \\ & \text { Output } Z_{11-0} \end{aligned}$	

Notes:

1. The output ports X, Y, Z and CASOUT, and input port CASIN are internally reconfigured by the device as required for each mode of the device. The multiple-function pins have names which are combinations of these titles, as appropriate.
2. The output drivers on pins XC_{11-0} and YC_{11-8} are not necessarily disabled until after the first rising edge of CLK following power-up. If these pins are to be tied to other output drivers, to each other, or to ground or V_{DD}, the user should ensure that a clock pulse arrives within a few seconds of power-up, to avoid bus contention.

Table 3. Configuration Mode Word

MODE $_{\mathbf{1}, \mathbf{0}}$	Configuration Mode
00	3×3 Matrix Multiply
01	9 -Tap One Dimensional FIR
10	3×3-Pixel Convolver
11	4×2-Pixel Convolver

Table 4. Coefficient Write Enable Word

CWE $_{\mathbf{1 , 0}}$	Coefficient Set Selected
00	Hold all registers
01	Update KA1, KB1, KC1
10	Update KA2, KB2, KC2
11	Update KA3, KB3, KC3

Table 5. Coefficient Input Ports

Input Port	Registers Available
KA	KA1, KA2, KA3
KB	KB1, KB2, KB3
KC	KC1, KC2, KC3

3 x 3 Matrix Multiplier (Mode 00)

This mode utilizes all six input and output ports in the basic configuration to realize a "triple dot product", in which each output is the sum of all three input words in that column
multiplied by the appropriate stored coefficients. The three corresponding sums of products are available at the outputs five clock cycles after the input data are latched, and three new data words half-LSB rounded to 12 bits are then available every clock cycle.
$\mathrm{X}(5)=\mathrm{A}(1) \mathrm{KA} 1(1)+\mathrm{B}(1) \mathrm{KB} 1(1)+\mathrm{C}(1) \mathrm{KC} 1(1)$
$\mathrm{Y}(5)=\mathrm{A}(1) \mathrm{KA} 2(1)+\mathrm{B}(1) \mathrm{KB} 2(1)+\mathrm{C}(1) \mathrm{KC} 2(1)$
$\mathrm{Z}(5)=\mathrm{A}(1) \mathrm{KA} 3(1)+\mathrm{B}(1) \mathrm{KB} 3(1)+\mathrm{C}(1) \mathrm{KC} 3(1)$

Figure 1. 3×3 Matrix Multiplier Impulse Response (Mode 00)

Figure 2. 3×3 Matrix Multiplier Configuration (Mode 00)

9-Tap FIR Filter Mode (01)

The architecture for this configuration is shown in Figure 4. The user loads the desired coefficient set, presents input data to ports A and B simultaneously (most applications will wire the A and B inputs together), and receives the resulting 9sample response, half-LSB rounded to 16 bits, 5 to 13 clock cycles later. A new output data word is available every clock cycle.

The figure shows that the input data are automatically rightshifted by one position through the row of multiplier input registers on every clock in anticipation of a new input data word.

Latency: Impulse in to center of 9-tap response $=9$ registers. Cascade In to Cascade Out $=4$ registers.

```
CASOUT(13) =
```

CASOUT(13) =
A(9)KA3(9)+A(8)KA2(8)+A(7)KA1(7)
A(9)KA3(9)+A(8)KA2(8)+A(7)KA1(7)
+B(6)KB3(9)+B(5)KB2(8)+B(4)KB1(7)
+B(6)KB3(9)+B(5)KB2(8)+B(4)KB1(7)
+B(3)KC3(9)+B(2)KC2(8)+B(1)KC1(7)
+B(3)KC3(9)+B(2)KC2(8)+B(1)KC1(7)
+CASIN(10)

```
        +CASIN(10)
```


CWE

KA, KB, KC KK_1 K_2 K_3

MODE CONTROL

CASIN

Figure 3. 9-Tap FIR Filter Impulse Response (Mode 01)

Figure 4. 9-Tap FIR Filter Configuration (Mode 01)

3×3 Pixel Convolver (Mode 10)

This filter configuration accepts a 3 pixel-square neighborhood, side-loaded three pixels at a time through input ports A, B and C, and multiplies the 9 most recent pixel values by the coefficient set currently stored in the registers. These products are summed with the data presented to the cascade input, and a new 3-cycle impulse response, rounded to 16 bits, is available at the output port 5 to 7 clocks later, with a new output available on every clock cycle.

The input pixel data are automatically shifted one location to the right through the three rows of multiplier input registers on every clock in anticipation of three new input data words, effectively sliding the convolutional window over one column in an image plane.

CASOUT(7)=
$\mathrm{A}(3) \mathrm{KA} 3(3)+\mathrm{A}(2) \mathrm{KA} 2(2)+\mathrm{A}(1) \mathrm{KA} 1$ (1)
$+\mathrm{B}(3) \mathrm{KB} 3(3)+\mathrm{B}(2) \mathrm{KB} 2(2)+\mathrm{B}(1) \mathrm{KB} 1(1)$
$+\mathrm{C}(3) \mathrm{KC} 3(3)+\mathrm{C}(2) \mathrm{KC} 2(2)+\mathrm{C}(1) \mathrm{KC} 1(1)$
$+\mathrm{CASIN}(4)$

Latency: Impulse in to center of 3-tap response $=6$ registers. Cascade In to Cascade Out=4 registers.

MODE 10

CASIN

CASOUT

Figure 5.3×3-Pixel Convolver Impulse Response (Mode 10)

Figure 6. 3×3-Pixel Convolver Configuration (Mode 10)

4×2 2-Pixel Cascadeable Convolver (Mode 11)

Similar to Mode 10, the 4×2-Pixel convolver allows the use to perform full-speed cubic convolution with only two TMC2250A devices and the TMC2111A Pipeline Delay Register to synchronize the cascade ports (see the Applications Discussion section).

Pixel data are side-loaded into ports A and B, multiplied by the onboard coefficients, summed with the cascade input, and half-LSB rounded to 16 bits. The four-cycle impulse response emerges at the cascade output port 5 to 8 clock cycles later. A new output word is available on every clock cycle. Note that Multiplier KC2 is not used in this mode and that its stored coefficient is ignored.

As shown below, the column of input pixel data is automatically shifted one location to the right through the two rows of multiplier input registers on every clock in anticipation of two new input data words, effectively sliding the convolutional window over one column in an image plane.

CASOUT(8)=
$\mathrm{A}(4) \mathrm{KA} 3(4)+\mathrm{A}(3) \mathrm{KA} 2(3)+\mathrm{A}(2) \mathrm{KA} 1$ (2)
$+\mathrm{A}(1) \mathrm{KB} 3(4)+\mathrm{B}(4) \mathrm{KB} 3(4)+\mathrm{B}(3) \mathrm{KB} 2(3)$
$+\mathrm{B}(2) \mathrm{KB} 1(2)+\mathrm{B}(1) \mathrm{KC} 1(2)+\mathrm{CASIN}(5)$

Figure 7.4×2-Pixel Convolver Impulse Response (Mode 11)

Figure 8.4×2-Pixel Convolver Configuration (Mode 11)

Figure 9. Input/Output Timing Diagram

Figure 10. Equivalent Digital Input Circuit
Absolute Maximum Ratings (beyond which the device may be damaged) 1

Parameter	Min	Typ	Max	Unit
Supply Voltage	-0.5		7.0	V
Input Voltage	-0.5		$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Applied Voltage 2	-0.5		$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Externally Forced Current ${ }^{3,4}$	-3.0		6.0	mA
Short Circuit Duration (single output in HIGH state to ground)			1	sec
Operating, Ambient Temperature	-20		110	${ }^{\circ} \mathrm{C}$
Junction Temperature			140	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65		150	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature (10 seconds)			300	${ }^{\circ} \mathrm{C}$

Notes:

1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if Operating Conditions are not exceeded.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.

Operating Conditions

Parameter		Min	Nom	Max	Units	
V_{DD}	Power Supply Voltage		4.75	5.0	5.25	V
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency	TMC2250A			30	MHz
		TMC2250A-2			40	MHz
		TMC2250A-3			50	MHz
$\mathrm{t}_{\text {PWH }}$	CLK pulse width, HIGH		6			ns
$\mathrm{t}_{\text {PWL }}$	CLK pulse width, LOW		8			ns
t_{S}	Input Data Setup Time		6			ns
t_{H}	Input Data Hold Time	2			ns	
$\mathrm{~V}_{\mathrm{IH}}$	Input Voltage, Logic HIGH		2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Input Voltage, Logic LOW				0.8	V
I_{OH}	Output Current, Logic HIGH				-2.0	mA
I_{OL}	Output Current, Logic LOW		0		4.0	mA
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature, Still Air			70	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics

Parameter		Conditions	Min	Typ	Max	Units
I_{DD}	Total Power Supply Current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}, \mathrm{C}_{\text {LOAD }}=25 \mathrm{pF}, \mathrm{f}_{\mathrm{CLK}}=\mathrm{Max}$				
		TMC2250A			125	mA
		TMC2250A-2			140	mA
		TMC2250A-3			155	mA
$\mathrm{I}_{\text {DDU }}$	Power Supply Current, Unloaded	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}, \overline{\mathrm{OE}}=\mathrm{HIGH}, \mathrm{f}_{\text {CLK }}=\mathrm{Max}$				
		TMC2250A			120	mA
		TMC2250A-2			135	mA
		TMC2250A-3			150	mA
$\mathrm{I}_{\text {DDQ }}$	Power Supply Current, Quiescent	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}, \mathrm{CLK}=\mathrm{LOW}$			12	mA
$\mathrm{C}_{\text {PIN }}$	I/O Pin Capacitance			5		pF
I_{IH}	Input Current, HIGH ${ }^{1}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$			± 5	$\mu \mathrm{A}$
I_{IL}	Input Current, LOW ${ }^{1}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{OZH}}$	Hi-Z Output Leakage Current, Output HIGH ${ }^{2}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$			± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZL }}$	Hi-Z Output Leakage Current, Output LOW ${ }^{2}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
l OS	Short-Circuit Current		-20		-80	mA
V_{OH}	Output Voltage, HIGH	$\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{DD}}=\mathrm{Min}$	2.4			V
V_{OL}	Output Voltage, LOW	$\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{DD}}=\mathrm{Min}$			0.4	V

Notes:

1. Except pins $\mathrm{XC}_{11-0}, \mathrm{YC}_{11-8}$.
2. Pins $\mathrm{XC}_{11-0}, \mathrm{YC}_{11-8}$.

Switching Characteristics

Parameter		Conditions	Min	Typ	Max	Units
t_{DO}	Output Delay Time	$\mathrm{C}_{\text {LOAD }}=25 \mathrm{pF}$			15	ns
t_{HO}	Output Hold Time	$\mathrm{C}_{\text {LOAD }}=25 \mathrm{pF}$	3			ns

Application Notes

Performing Large-Kernel Pixel Interpolation

The Cascade Input and Output Ports of the TMC2250A allow the user to stack multiple devices to perform larger interpolation kernels with no decrease in pixel throughput. Figure 12 illustrates a basic application utilizing Mode 11 to realize a 4 x 4 -pixel kernel, also called Cubic Convolution. This example utilizes the TMC2011A Variable-Length Shift Register to compensate for the internal latency of each TMC2250A. Alternatively, some applications may utilize RAM, FIFO's, or other methods to store multiple-line pixel data. In these cases the user may compensate for latency by simply offsetting the access sequencing of the storage devices.

Figure 12. Figure 12. Performing Cubic Convolution with Two TMC2250A's

Related Products

- TMC2301 Image Resampling Sequencer
- TMC2302A Image Manipulation Sequencer
- TMC2249A Video Mixer
- TMC2242B Half-Band Filter

Mechanical Dimensions

120-Lead CPGA Package

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	
A	. 080	. 160	2.03	4.06	
A1	. 040	. 060	1.01	1.53	
A2	. 125	. 215	3.17	5.46	
$\varnothing \mathrm{B}$. 016	. 020	0.40	0.51	2
øB2	. 050 NOM.		1.27 NOM.		2
D	1.340	1.380	33.27	35.05	SQ
D1	1.200 BSC		30.48 BSC		
e	. 100 BSC		2.54 BSC		
L	. 110	. 145	2.79	3.68	
L1	. 170	. 190	4.31	4.83	
M	13		13		3
N	120		120		4
P	. 003	-	. 076	-	

Notes:

1. Pin \#1 identifier shall be within shaded area shown.
2. Pin diameter excludes solder dip finish.
3. Dimension " M " defines matrix size.
4. Dimension " N " defines the maximum possible number of pins.
5. Orientation pin is at supplier's option.
6. Controlling dimension: inch.

Mechanical Dimensions

120-Lead PPGA Package

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	
A	. 080	. 160	2.03	4.06	
A1	. 040	. 060	1.01	1.53	
A2	. 125	. 215	3.17	5.46	
$\varnothing \mathrm{B}$. 016	. 020	0.40	0.51	2
øB2	. 050 NOM.		1.27 NOM.		2
D	1.340	1.380	33.27	35.05	SQ
D1	1.200 BSC		30.48 BSC		
e	. 100 BSC		2.54 BSC		
L	. 110	. 145	2.79	3.68	
L1	. 170	. 190	4.31	4.83	
M	13		13		3
N	120		120		4
P	. 003	-	. 076	-	

Notes:

1. Pin \#1 identifier shall be within shaded area shown.
2. Pin diameter excludes solder dip finish.
3. Dimension " M " defines matrix size.
4. Dimension "N" defines the maximum possible number of pins.
5. Orientation pin is at supplier's option.
6. Controlling dimension: inch.

Mechanical Dimensions

120-Lead Metric Quad Flat Package to Pin Grid Array Package (MPGA)

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	
A	. 309	. 311	7.85	7.90	
A1	. 145	. 155	3.68	3.94	
A2	. 080	. 090	2.03	2.29	
A3	. 050 TYP.		1.27 TYP.		
$\emptyset \mathrm{B}$. 016	. 020	0.40	0.51	2
ø日2	. 050 NOM.		1.27 NOM.		2
D	1.355	1.365	34.42	34.67	SQ
D1	1.200 BSC		30.48 BSC		
e	. 100 BSC		2.54 BSC		
L	. 175	. 185	4.45	4.70	
M	13		13		3
N	120		120		4

Notes:

1. Pin \#1 identifier shall be within shaded area shown.
2. Pin diameter excludes solder dip finish.
3. Dimension " M " defines matrix size.
4. Dimension "N" defines the maximum possible number of pins.
5. Orientation pin is at supplier's option.
6. Controlling dimension: inch.

Mechanical Dimensions

120-Lead MQFP Package

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	
A	-	. 154	-	3.92	
A1	. 010	-	. 25	-	
A2	. 125	. 144	3.17	3.67	
B	. 012	. 018	. 30	. 45	3, 5
C	. 005	. 009	. 13	. 23	5
D/E	1.219	1.238	30.95	31.45	
D1/E1	1.098	1.106	27.90	28.10	
e	. 0315 BSC		. 80 BSC		
L	. 026	. 037	. 65	. 95	4
N	120		120		
ND	30		30		
α	0°	7°	0°	7°	
ccc	-	. 004	-	. 10	

Notes:

1. All dimensions and tolerances conform to ANSI Y14.5M-1982.
2. Controlling dimension is millimeters.
3. Dimension "B" does not include dambar protrusion. Allowable dambar protrusion shall be .08 mm (.003in.) maximum in excess of the "B" dimension. Dambar cannot be located on the lower radius or the foot.
4. " L " is the length of terminal for soldering to a substrate.
5. " B " \& " C " includes lead finish thickness.

Ordering Information

Product Number	Temperature Range	Speed Grade	Screening	Package	Package Marking
TMC2250AG1C	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	30 MHz	Commercial	120 Pin Ceramic Pin Grid Array	2250AG1C
TMC2250AG1C2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 MHz	Commercial	120 Pin Ceramic Pin Grid Array	2250AG1C2
TMC2250AG1C3	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	50 MHz	Commercial	120 Pin Ceramic Pin Grid Array	2250AG1C3
TMC2250AH5C	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	30 MHz	Commercial	120 Pin Plastic Pin Grid Array	2250 AH 5 C
TMC2250AH5C2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 MHz	Commercial	120 Pin Plastic Pin Grid Array	2250 AH 5 C 2
TMC2250AH5C3	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	50 MHz	Commercial	120 Pin Plastic Pin Grid Array	2250 AH 5 C 3
TMC2250AH6C	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	30 MHz	Commercial	120 Lead Metric Quad Flatpack to Pin Grid Array	N/A
TMC2250AH6C2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 MHz	Commercial	120 Lead Metric Quad Flatpack to Pin Grid Array	N/A
TMC2250AH6C3	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	50 MHz	Commercial	120 Lead Metric Quad Flatpack to Pin Grid Array	N/A
TMC2250AKEC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	30 MHz	Commercial	120 Lead Plastic Quad Flatpack	2250 AKEC
TMC2250AKEC2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 MHz	Commercial	120 Lead Plastic Quad Flatpack	$2250 A K E C 2$
TMC2250AKEC3	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	50 MHz	Commercial	120 Lead Plastic Quad Flatpack	$2250 A K E C 3$

For additional information regarding our products, please visit CADEKA at: cadeka.com
CADEKA Headquarters Loveland, Colorado
T: 970.663.5452
T: 877.663.5452 (toll free) writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.
Copyright © 2007-2008 by CADEKA Microcircuits LLC. All rights reserved.

