LOW ON-STATE RESISTANCE QUAD SPST CMOS ANALOG SWITCHES

FEATURES

- 2-V to 12-V Single-Supply Operation
- Specified ON-State Resistance:
- 15Ω Max With 12-V Supply
- 20Ω Max With 5-V Supply
- 50Ω Max With 3.3-V Supply
- $R_{\text {DSoN }}$ Matching
- 2.5Ω (Max) at 12 V
- 3Ω (Max) at 5 V
- 3.5Ω (Max) at 3.3 V
- Specified Low OFF-Leakage Currents:
-1 nA at $25^{\circ} \mathrm{C}$
- 10 nA at $85^{\circ} \mathrm{C}$
- Specified Low ON-Leakage Currents:
- 1 nA at $25^{\circ} \mathrm{C}$
- 10 nA at $85^{\circ} \mathrm{C}$
- Low Charge Injection: 11.5 pC (12-V Supply)
- Fast Switching Speed:
$\mathrm{t}_{\mathrm{ON}}=80 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}=50 \mathrm{~ns}$ (12-V Supply)
- Break-Before-Make Operation ($t_{\text {ON }}>t_{\text {OFF }}$)
- TTL/CMOS-Logic Compatible With 5-V Supply
- Available in TSSOP-14 Package, SOIC-14

D OR PW PACKAGE...TS12A44514
(TOP VIEW)

D OR PW PACKAGE...TS12A44515
(TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

The TS12A44513/TS12A44514/TS12A44515 are quad single pole/single throw (SPST), low-voltage / wide range, single-supply CMOS analog switches, with very low switch ON-state resistance. The TS12A44513 has two switches normally closed (NC) and two switches normally open (NO), the TS12A44514 switches are normally open (NO), the TS12A44515 switches are normally closed (NC).

These CMOS switches can operate continuously with a single supply between 2 V and 12 V . Each switch can handle rail-to-rail analog signals. The OFF-leakage current maximum is only 1 nA at $25^{\circ} \mathrm{C}$ or 10 nA at $85^{\circ} \mathrm{C}$.
All digital inputs have $0.8-\mathrm{V}$ to $2.4-\mathrm{V}$ logic thresholds, ensuring TTL/CMOS-logic compatibility when using a $5-\mathrm{V}$ supply.

ORDERING INFORMATION

$\mathbf{T}_{\mathbf{A}}$	PACKAGE ${ }^{(1)(2)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$34^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOIC - D	Reel of 2500	TS12A44513DR	TS12A44513
		TS12A44514DR	TS12A44514	
		TS12A44515DR	TS12A44515	
	TSSOP - PW	Reel of 2000	TS12A44513PWR	YD4513
		TS12A44514PWR	YD4514	
		TS12A44515PWR	YD4515	

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

ABSOLUTE MINIMUM AND MAXIMUM RATINGS ${ }^{(1)(2)}$
voltages referenced to GND

				MIN	MAX	UNIT
V_{+}	Supply voltage range			-0.3	13	V
V_{NC} V_{NO} $\mathrm{V}_{\mathrm{COM}}$	Analog voltage range ${ }^{(3)}$			-0.	$V_{+}+0.3$	V
I_{NC} I_{NO} $\mathrm{I}_{\mathrm{COM}}$	Analog Current range			-2	20	mA
	Continuous current into any terminal				± 20	mA
	Peak current, NO or COM (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)				± 30	mA
	ESD per method 3015.7				2000	V
T_{A}	Operating temperature range			-40	85	${ }^{\circ} \mathrm{C}$
$P_{D} \quad$ Power dissipation		Mounted on JEDEC 4-layer board (JESD	D package		1.15	W
		51-7), No airflow, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	PW package		0.88	
$\mathrm{T}_{\text {stg }}$	Storage temperature range			-65	150	${ }^{\circ} \mathrm{C}$
	Lead temperature (soldering, 10 s)				300	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(3) Voltages exceeding V_{+}or GND on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.

THERMAL IMPEDANCE

				UNIT
$\theta_{\mathrm{JA}} \quad \begin{aligned} & \text { Thermal impedance, } \\ & \text { junction to free air }\end{aligned}$	Mounted on JEDEC 1-layer board (JESD 51-3), No airflow	D package	133	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		PW package	167	
	Mounted on JEDEC 4-layer board (JESD 51-7), No airflow	D package	86	
		PW package	112	

ELECTRICAL CHARACTERISTICS FOR 5-V SUPPLY ${ }^{(1)}$

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	T_{A}	MIN	TYP ${ }^{(2)}$	MAX	UNIT
Analog Switch							
Analog signal range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V_{+}	V
ON-state resistance	$\mathrm{r}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {СOM }}=3.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA} \end{aligned}$	$25^{\circ} \mathrm{C}$		12	20	Ω
			Full			30	
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & \mathrm{V}_{\text {сом }}=1 \mathrm{~V}, 2 \mathrm{~V}, 3 \mathrm{~V}, \\ & \mathrm{I}_{\text {Сом }}=1 \mathrm{~mA} \end{aligned}$	$25^{\circ} \mathrm{C}$		1	3	Ω
			Full			4	
ON-state resistance matching between channels ${ }^{(3)}$	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$			3	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			4	
NO, NC OFF leakage current ${ }^{(4)}$	$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF}),}$ $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{N}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$			1	nA
			Full			10	
COM OFF leakage current ${ }^{(4)}$	$I_{\text {COM (OFF) }}$	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$			1	nA
			Full			10	
COM ON leakage current ${ }^{(4)}$	$\mathrm{I}_{\text {COM(ON }}$	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$			1	nA
			Full			10	
Digital Control Input (IN)							
Input logic high	V_{IH}		Full	2.4		V_{+}	V
Input logic low	$\mathrm{V}_{\text {IL }}$		Full	0		0.8	V
Input leakage current	$\mathrm{I}_{\text {IH }}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}, 0 \mathrm{~V}$	Full			0.01	$\mu \mathrm{A}$
Dynamic							
Turn-on time	ton	see Figure 6	$25^{\circ} \mathrm{C}$		45	100	ns
			Full			125	
Turn-off time	$\mathrm{t}_{\text {OFF }}$	see Figure 6	$25^{\circ} \mathrm{C}$		35	50	ns
			Full			70	
Charge injection ${ }^{(5)}$	Qc	$\begin{aligned} & C_{L}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega, \text { See Figure } 5 \end{aligned}$	$25^{\circ} \mathrm{C}$		-1.5		pC
$\begin{aligned} & \text { NO, NC } \\ & \text { OFF capacitance } \end{aligned}$	$\mathrm{C}_{\text {NO(OFF), }}$ $\mathrm{C}_{\mathrm{NC}(\text { OFF })}$	$\mathrm{f}=1 \mathrm{MHz}$, See Figure 8	$25^{\circ} \mathrm{C}$		8		pF
COM OFF capacitance	$\mathrm{C}_{\text {Com(OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, See Figure 8	$25^{\circ} \mathrm{C}$		8		pF
COM ON capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{f}=1 \mathrm{MHz}$, See Figure 8	$25^{\circ} \mathrm{C}$		19		pF
Digital input capacitance	Cl_{1}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{+}, 0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		2		pF
Bandwidth	BW	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$25^{\circ} \mathrm{C}$		530		MHz
OFF isolation	$\mathrm{O}_{\text {ISO }}$	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$25^{\circ} \mathrm{C}$		-94		dB
Total harmonic distortion	THD	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=15 \mathrm{pF}, \\ & V_{N O}=1 \mathrm{~V}_{\text {RMS }}, f=100 \mathrm{kHz} \end{aligned}$	$25^{\circ} \mathrm{C}$		0.09		\%
Supply							
V_{+}supply current	I_{+}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{+}	$25^{\circ} \mathrm{C}$			0.05	$\mu \mathrm{A}$
			Full			0.1	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
(2) Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(3) $\Delta \mathrm{r}_{\mathrm{ON}}=\mathrm{r}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{r}_{\mathrm{ON}(\mathrm{MIN})}$
(4) Leakage parameters are 100% tested at maximum-rated hot operating temperature, and are ensured by correlation at $25^{\circ} \mathrm{C}$.
(5) Specified by design, not production tested

SCDS247-OCTOBER 2008

www.ti.com

ELECTRICAL CHARACTERISTICS FOR 12-V SUPPLY ${ }^{(1)}$

$\mathrm{V}_{+}=11.4 \mathrm{~V}$ to $12.6 \mathrm{~V}, \mathrm{~V}_{\mathbb{N H}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	$\mathrm{T}_{\text {A }}$	MIN TYP ${ }^{(2)}$	MAX	UNIT
Analog Switch						
Analog signal range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0	V_{+}	V
ON-state resistance	$\mathrm{r}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{+}=11.4 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=10 \mathrm{~V}, \\ & \mathrm{I}_{\text {COM }}=1 \mathrm{~mA} \end{aligned}$	$25^{\circ} \mathrm{C}$	6.5	10	Ω
			Full		15	
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & \mathrm{V}_{+}=11.4 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}, \\ & \mathrm{I}_{\text {COM }}=1 \mathrm{~mA} \end{aligned}$	$25^{\circ} \mathrm{C}$	1.5	3	Ω
			Full		4	
ON-state resistance matching between channels ${ }^{(3)}$	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{+}=11.4 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$		2.5	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		3	
NO, NC OFF leakage current ${ }^{(4)}$	$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF}),}$ $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{+}=12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$		1	$n A$
			Full		10	
COM OFF leakage current ${ }^{(4)}$	$\mathrm{I}_{\text {COM (OFF) }}$	$\begin{aligned} & \mathrm{V}_{+}=12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$		1	nA
			Full		10	
COM ON leakage current ${ }^{(4)}$	$\mathrm{I}_{\text {COM(ON }}$	$\begin{aligned} & \mathrm{V}_{+}=12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$		1	$n A$
			Full		10	
Digital Control Input (IN)						
Input logic high	$\mathrm{V}_{\text {IH }}$		Full	5	V_{+}	V
Input logic low	$\mathrm{V}_{\text {IL }}$		Full	0	0.8	V
Input leakage current	$\mathrm{I}_{\text {IH }}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}, 0 \mathrm{~V}$	Full		0.001	$\mu \mathrm{A}$
Dynamic						
Turn-on time	t_{ON}	See Figure 6	$25^{\circ} \mathrm{C}$	25	75	ns
			Full		80	
Turn-off time	$t_{\text {OFF }}$	See Figure 6	$25^{\circ} \mathrm{C}$	20	45	ns
			Full		50	
Charge injection ${ }^{(5)}$	Q_{C}	$\begin{aligned} & C_{L}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega, \text { See Figure } 5 \end{aligned}$	$25^{\circ} \mathrm{C}$	-10.5		pC
NO, NC OFF capacitance	$\mathrm{C}_{\mathrm{NO} \text { (OFF), }}$ $\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, See Figure 8	$25^{\circ} \mathrm{C}$	8		pF
COM OFF capacitance	$\mathrm{C}_{\text {COM (OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, See Figure 8	$25^{\circ} \mathrm{C}$	8		pF
COM ON capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{f}=1 \mathrm{MHz}$, See Figure 8	$25^{\circ} \mathrm{C}$	21.5		pF
Digital input capacitance	Cl_{1}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}, 0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	2		pF
Bandwidth	BW	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$25^{\circ} \mathrm{C}$	530		MHz
OFF isolation	OISO	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$25^{\circ} \mathrm{C}$	-95		dB
Total harmonic distortion	THD	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$25^{\circ} \mathrm{C}$	0.07		\%
Supply						
V_{+}supply current	I_{+}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{+}	$25^{\circ} \mathrm{C}$		0.05	$\mu \mathrm{A}$
			Full		0.2	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
(2) Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(3) $\Delta r_{O N}=r_{O N(M A X)}-r_{O N(M I N)}$
(4) Leakage parameters are 100% tested at maximum-rated hot operating temperature, and are ensured by correlation at $25^{\circ} \mathrm{C}$.
(5) Specified by design, not production tested

ELECTRICAL CHARACTERISTICS FOR 3-V SUPPLY ${ }^{(1)}$

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	TA	MIN	TYP ${ }^{(2)}$ MAX	UNIT
Analog Switch						
Analog signal range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\text {NO }}, \mathrm{V}_{\text {NC }}$			0	V_{+}	V
ON-state resistance	$\mathrm{r}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{+}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{NO}}=1 \mathrm{~mA}, \end{aligned}$	$25^{\circ} \mathrm{C}$		$20 \quad 40$	Ω
			Full		50	
ON-state resistance flatness	$r_{\text {on(flat) }}$	$\begin{aligned} & \mathrm{V}_{+}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 1.5 \mathrm{~V}, 2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA} \end{aligned}$	$25^{\circ} \mathrm{C}$		13	Ω
			Full		4	
ON-state resistance matching between channels ${ }^{(3)}$	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$		3.5	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		4.5	
NO, NC OFF leakage current ${ }^{(4)}$	$\mathrm{I}_{\mathrm{NO}(\text { OFF }),}$ $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$		1	nA
			Full		10	
COM OFF leakage current ${ }^{(4)}$	$\mathrm{I}_{\text {COM }(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$		1	nA
			Full		10	
COM ON leakage current ${ }^{(4)}$	$\mathrm{I}_{\text {COM (ON) }}$	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$		1	nA
			Full		10	
Digital Control Input (IN)						
Input logic high	V_{IH}		Full	2.4	V_{+}	V
Input logic low	$\mathrm{V}_{\text {IL }}$		Full	0	0.8	V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{IL}}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}, 0 \mathrm{~V}$	Full		0.01	$\mu \mathrm{A}$
Dynamic						
Turn-on time ${ }^{(5)}$	t_{ON}	See Figure 6	$25^{\circ} \mathrm{C}$		$70 \quad 120$	ns
			Full		175	
Turn-off time ${ }^{(5)}$	$t_{\text {OFF }}$	See Figure 6	$25^{\circ} \mathrm{C}$		$50 \quad 80$	ns
			Full		120	
Charge injection ${ }^{(5)}$	Q_{C}	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, See Figure 5	$25^{\circ} \mathrm{C}$		-0.5	pC
NO, NC OFF capacitance	$\mathrm{C}_{\mathrm{NO} \text { (OFF), }}$ $\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, See Figure 8	$25^{\circ} \mathrm{C}$		8	pF
COM OFF capacitance	$\mathrm{C}_{\text {COM (OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, See Figure 8	$25^{\circ} \mathrm{C}$		8	pF
COM ON capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{f}=1 \mathrm{MHz}$, See Figure 8	$25^{\circ} \mathrm{C}$		17	pF
Digital input capacitance	C_{1}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}, 0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		2	pF
Bandwidth	BW	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$25^{\circ} \mathrm{C}$		510	MHz
OFF isolation	OISo	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$25^{\circ} \mathrm{C}$		-94	dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	$25^{\circ} \mathrm{C}$		0.27	\%
Supply						
V_{+}supply current	I_{+}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{+}	$25^{\circ} \mathrm{C}$		0.03	$\mu \mathrm{A}$
			Full		0.05	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
(2) Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(3) $\Delta r_{O N}=r_{O N(M A X)}-r_{O N(M I N)}$
(4) Leakage parameters are 100% tested at maximum-rated hot operating temperature, and are ensured by correlation at $25^{\circ} \mathrm{C}$.
(5) Specified by design, not production tested

TYPICAL PERFORMANCE

Figure 1. r_{ON} vs $\mathrm{V}_{\text {COM }}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Figure 3. r_{ON} vs $\mathrm{V}_{\text {COM }}\left(\mathrm{V}_{+}=4.5 \mathrm{~V}\right)$

Figure 2. r_{ON} vs $\mathrm{V}_{\text {COM }}\left(\mathrm{V}_{+}=3 \mathrm{~V}\right)$

Figure 4. $\mathrm{r}_{\mathrm{ON}} \mathrm{vs} \mathrm{V}_{\mathrm{COM}}\left(\mathrm{V}_{+}=11.4 \mathrm{~V}\right)$

PIN DESCRIPTION ${ }^{(1)}$

PIN NO.			NAME	
TS12A44513	TS12A44514	TS12A44515		
DSSCRIPTION				
$2,4,9,10$	$2,4,9,10$	$2,4,9,10$	COM	Common
14	14	14	V $_{+}$	Power supply
$5,6,12,13$	$5,6,12,13$	$5,6,12,13$	IN	Digital control to connect COM to NO or NC
7	7	7	GND	Digital ground
1,8	$1,3,8,11$	-	NO	Normally open
3,11	-	$1,3,8,11$	NC	Normally closed

(1) NO, NC, and COM pins are identical and interchangeable. Any may be considered as an input or an output; signals pass in both directions.

TEXAS
InSTRUMENTS

APPLICATION INFORMATION

Power-Supply Considerations

The TS12A44513/TS12A44514/TS12A44515 construction is typical of most CMOS analog switches, except that they have only two supply pins: V_{+}and GND. V_{+}and GND drive the internal CMOS switches and set their analog voltage limits. Reverse ESD-protection diodes connected in series are internally connected between each analog-signal pin and both V_{+}and GND. If an analog signal exceeds V_{+}or GND, one of the diodes will be forward biased, but the other will be reverse biased preventing current flow.
Virtually all the analog leakage current comes from the ESD diodes to V_{+}or GND. Although the ESD diodes on a given signal pin are identical and, therefore, fairly well balanced, they are reverse biased differently. Each is biased by either V_{+}or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V_{+}and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity.
There is no connection between the analog-signal paths and V_{+}or GND.
V_{+}and GND also power the internal logic and logic-level translators. The logic-level translators convert the logic levels to switched V_{+}and $G N D$ signals to drive the analog signal gates.

Logic-Level Thresholds

The logic-level thresholds are CMOS/TTL compatible when V_{+}is 5 V . As V_{+}is raised, the level threshold increases slightly. When V_{+}reaches 12 V , the level threshold is about 3 V - above the TTL-specified high-level minimum of 2.8 V , but still compatible with CMOS outputs.

CAUTION:

Do not connect the TS12A44513/TS12A44514/MAS4515 V_{+}to 3 V and then connect the logic-level pins to logic-level signals that operate from $5-\mathrm{V}$ supply. Output levels can exceed 3 V and violate the absolute maximum ratings, damaging the part and/or external circuits.

High-Frequency Performance

In $50-\Omega$ systems, signal response is reasonably flat up to 250 MHz (see Typical Operating Characteristics). Above 20 MHz , the on response has several minor peaks that are highly layout dependent. The problem is not in turning the switch on; it is turning it off. The OFF-state switch acts like a capacitor and passes higher frequencies with less attenuation. At 10 MHz , OFF isolation is about -45 dB in $50-\Omega$ systems, decreasing (approximately 20 dB per decade) as frequency increases. Higher circuit impedances also make OFF isolation decrease. OFF isolation is about 3 dB above that of a bare IC socket, and is due entirely to capacitive coupling.

Test Circuits/Timing Diagrams

Figure 5. Charge Injection

TS12A44513, TS12A44514, TS12A44515

Figure 6. Switching Times

Measurements are standardized against short at socket
Measurements are standardized against short at socket
terminals. OFF isolation is measured between COM and OFF terminals. OFF isolation is measured between COM and OFF
terminals on each switch. ON loss is measured between COM and ON terminals on each switch. Signal direction through switch is reversed; worst values are recorded.

$$
\begin{array}{r}
\text { OFF Isolation }=20 \log \frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}} \\
\text { ON Loss }=20 \log \frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{~V}_{\text {IN }}}
\end{array}
$$

Figure 7. OFF Isolation and ON Loss

Figure 8. NO, NC, and COM Capacitance
www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
TS12A44513DR	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TS12A44513DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TS12A44513PWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TS12A44513PWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TS12A44514DR	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TS12A44514DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TS12A44514PWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TS12A44514PWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TS12A44515DR	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TS12A44515DRG4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TS12A44515PWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TS12A44515PWRG4	ACTIVE	TSSOP	PW	14	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

In no event shall TI's liability arising out of such information exceed the total purchase price of the Tl part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TS12A44513DR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| TS12A44513PWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 7.0 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| TS12A44514DR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| TS12A44514PWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 7.0 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| TS12A44515DR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| TS12A44515PWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 7.0 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS12A44513DR	SOIC	D	14	2500	346.0	346.0	33.0
TS12A44513PWR	TSSOP	PW	14	2000	346.0	346.0	29.0
TS12A44514DR	SOIC	D	14	2500	346.0	346.0	33.0
TS12A44514PWR	TSSOP	PW	14	2000	346.0	346.0	29.0
TS12A44515DR	SOIC	D	14	2500	346.0	346.0	33.0
TS12A44515PWR	TSSOP	PW	14	2000	346.0	346.0	29.0

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

D (R-PDSO-G14) PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D. Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

