FEATURES

- 1-of-4 Bidirectional Translating Switches
- $I^{2} C$ Bus and SMBus Compatible
- Active-Low Reset Input
- Three Address Pins, Allowing up to Eight Devices on the $I^{2} C$ Bus
- Channel Selection Via $I^{2} C$ Bus
- Power Up With All Switch Channels Deselected
- Low R ${ }_{\text {ON }}$ Switches
- Allows Voltage-Level Translation Between 1.8-V, 2.5-V, 3.3-V, and 5-V Buses
- No Glitch on Power Up
- Supports Hot Insertion
- Low Standby Current
- Operating Power-Supply Voltage Range of 2.3 V to 5.5 V
- 5.5-V Tolerant Inputs
- 0 to $400-k H z$ Clock Frequency
- Latch-Up Performance Exceeds 100 mA Per JESD 78
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

The PCA9546A is a quad bidirectional translating switch controlled via the $I^{2} \mathrm{C}$ bus. The SCL/SDA upstream pair fans out to four downstream pairs, or channels. Any individual SCn/SDn channel or combination of channels can be selected, determined by the contents of the programmable control register.
An active-low reset ($\overline{\mathrm{RESET}}$) input allows the PCA9546A to recover from a situation in which one of the downstream $I^{2} \mathrm{C}$ buses is stuck in a low state. Pulling RESET low resets the $\mathrm{I}^{2} \mathrm{C}$ state machine and causes all the channels to be deselected, as does the internal power-on reset function.

ORDERING INFORMATION

$\mathrm{T}_{\text {A }}$	PACKAGE ${ }^{(1)(2)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	QFN - RGV	Reel of 2500	PCA9546ARGVR	PD546A
	QFN - RGY	Reel of 1000	PCA9546ARGYR	PD546A
	SOIC - D	Tube of 40	PCA9546AD	PCA9546A
			PCA9546ADG4	
		Reel of 2500	PCA9546ADR	
			PCA9546ADRG4	
		Reel of 250	PCA9546ADT	
			PCA9546ADTG4	
	SOIC - DW	Tube of 40	PCA9546ADW	PCA9546A
		Reel of 2000	PCA9546ADWR	
		Reel of 250	PCA9546ADWT	PREVIEW
	TSSOP - PW	Tube of 90	PCA9546APW	PD546A
			PCA9546APWE4	
		Reel of 2000	PCA9546APWR	
			PCA9546APWRE4	
		Reel of 250	PCA9546APWT	
			PCA9546APWTE4	
	TVSOP - DGV	Reel of 2000	PCA9546ADGVR	PD546A
		Reel of 250	PCA9546ADGVT	PREVIEW

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

The pass gates of the switches are constructed such that the V_{CC} pin can be used to limit the maximum high voltage, which will be passed by the PCA9546A. This allows the use of different bus voltages on each pair, so that $1.8-\mathrm{V}, 2.5-\mathrm{V}$, or $3.3-\mathrm{V}$ parts can communicate with $5-\mathrm{V}$ parts without any additional protection. External pullup resistors pull the bus up to the desired voltage level for each channel. All I/O pins are $5.5-\mathrm{V}$ tolerant.

TERMINAL FUNCTIONS

NO.		NAME	DESCRIPTION
$\begin{aligned} & \text { D, DGV, DW, PW, } \\ & \text { AND RGY } \end{aligned}$	RGV		
1	15	A0	Address input 0 . Connect directly to $\mathrm{V}_{C C}$ or ground.
2	16	A1	Address input 1. Connect directly to $\mathrm{V}_{C C}$ or ground.
3	1	RESET	Active low reset input. Connect to $\mathrm{V}_{\text {CC }}$ through a pullup resistor, if not used.
4	2	SD0	Serial data 0 . Connect to $\mathrm{V}_{C C}$ through a pullup resistor.
5	3	SC0	Serial clock 0 . Connect to V_{CC} through a pullup resistor.
6	4	SD1	Serial data 1. Connect to V_{CC} through a pullup resistor.
7	5	SC1	Serial clock 1. Connect to V_{CC} through a pullup resistor.
8	6	GND	Ground
9	7	SD2	Serial data 2. Connect to $\mathrm{V}_{C C}$ through a pullup resistor.
10	8	SC2	Serial clock 2. Connect to $\mathrm{V}_{C C}$ through a pullup resistor.
11	9	SD3	Serial data 3. Connect to V_{CC} through a pullup resistor.
12	10	SC3	Serial clock 3. Connect to V_{CC} through a pullup resistor.
13	11	A2	Address input 2. Connect directly to $\mathrm{V}_{C C}$ or ground.
14	12	SCL	Serial clock line. Connect to V_{CC} through a pullup resistor.
15	13	SDA	Serial data line. Connect to V_{CC} through a pullup resistor.
16	14	$\mathrm{V}_{C C}$	Supply power

A. Pin numbers shown are for the D, DGV, DW, PW and RGY packages.

Device Address

Following a start condition, the bus master must output the address of the slave it is accessing. The address of the PCA9546A is shown in Figure 1. To conserve power, no internal pullup resistors are incorporated on the hardware-selectable address pins, and they must be pulled high or low.

Figure 1. PCA9546A Address
The last bit of the slave address defines the operation to be performed. When set to a logic 1, a read is selected, while a logic 0 selects a write operation.

Control Register

Following the successful acknowledgment of the slave address, the bus master sends a byte to the PCA9546A, which is stored in the control register (see Figure 2). If multiple bytes are received by the PCA9546A, it will save the last byte received. This register can be written and read via the $I^{2} \mathrm{C}$ bus.

Figure 2. Control Register

Control Register Definition

One or several SCn/SDn downstream pairs, or channels, are selected by the contents of the control register (see Table 11). This register is written after the PCA9546A has been addressed. The four LSBs of the control byte are used to determine which channel or channels are to be selected. When a channel is selected, the channel becomes active after a stop condition has been placed on the $I^{2} \mathrm{C}$ bus. This ensures that all $\mathrm{SCn} / \mathrm{SDn}$ lines are in a high state when the channel is made active, so that no false conditions are generated at the time of connection. A stop condition always must occur right after the acknowledge cycle.

Table 1. Control Register Write (Channel Selection), Control Register Read (Channel Status) ${ }^{(1)}$

B7	B6	B5	B4	B3	B2	B1	B0	COMMAND
X	X	X	X	X	X	X	0	Channel 0 disabled
							1	Channel 0 enabled
X	X	X	X	X	X	0	X	Channel 1 disabled
						1		Channel 1 enabled
X	X	X	X	X	0	X	X	Channel 2 disabled
					1			Channel 2 enabled
X	X	X	X	0	X	X	X	Channel 3 disabled
				1				Channel 3 enabled
0	0	0	0	0	0	0	0	No channel selected, power-up/reset default state

(1) Several channels can be enabled at the same time. For example, $B 3=0, B 2=1, B 1=1, B 0=0$ means that channels 0 and 3 are disabled, and channels 1 and 2 are enabled. Care should be taken not to exceed the maximum bus capacity.

RESET Input

The RESET input is an active-low signal that may be used to recover from a bus-fault condition. When this signal is asserted low for a minimum of $t_{\text {wL }}$, the PCA9446A resets its registers and $I^{2} C$ state machine and deselects all channels. The RESET input must be connected to V_{Cc} through a pullup resistor.

Power-On Reset

When power is applied to V_{CC}, an internal power-on reset holds the PCA9546A in a reset condition until V_{CC} has reached $\mathrm{V}_{\text {POR }}$. At this point, the reset condition is released, and the PCA9546A registers and $I^{2} \mathrm{C}$ state machine are initialized to their default states, all zeroes, causing all the channels to be deselected. Thereafter, V_{CC} must be lowered below 0.2 V to reset the device.

Voltage Translation

The pass-gate transistors of the PCA9546A are constructed such that the V_{CC} voltage can be used to limit the maximum voltage that will be passed from one $I^{2} \mathrm{C}$ bus to another.
Figure 3 shows the voltage characteristics of the pass-gate transistors (note that the graph was generated using the data specified in the electrical characteristics section of this data sheet). In order for the PCA9546A to act as a voltage translator, the $\mathrm{V}_{\text {pass }}$ voltage must be equal to or lower than the lowest bus voltage. For example, if the main bus is running at 5 V , and the downstream buses are 3.3 V and 2.7 V , then $\mathrm{V}_{\text {pass }}$ must be equal to or below 2.7 V to effectively clamp the downstream bus voltages. As shown in Figure 3, $\mathrm{V}_{\text {pass }}(\mathrm{max}$) is at 2.7 V when the PCA9546A supply voltage is 3.5 V or lower, so the PCA9546A supply voltage could be set to 3.3 V . Pullup resistors then can be used to bring the bus voltages to their appropriate levels (see Figure 12).

Figure 3. $\mathrm{V}_{\text {pass }}$ Voltage vs V_{cc}

$1^{2} \mathrm{C}$ Interface

The $I^{2} \mathrm{C}$ bus is for two-way two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data transfer can be initiated only when the bus is not busy.
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high period of the clock pulse, as changes in the data line at this time are interpreted as control signals (see Figure 4).

Figure 4. Bit Transfer
Both data and clock lines remain high when the bus is not busy. A high-to-low transition of the data line while the clock is high is defined as the start condition (S). A low-to-high transition of the data line while the clock is high is defined as the stop condition (P) (see Figure 5).

Figure 5. Definition of Start and Stop Conditions
A device generating a message is a transmitter; a device receiving is the receiver. The device that controls the message is the master, and the devices that are controlled by the master are the slaves (see Figure 6).

Figure 6. System Configuration
The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge (ACK) bit. The transmitter must release the SDA line before the receiver can send an ACK bit.

When a slave receiver is addressed, it must generate an ACK after the reception of each byte. Also, a master must generate an ACK after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 7). Setup and hold times must be taken into account.

Figure 7. Acknowledgment on the $I^{2} C$ Bus
Data is transmitted to the PCA9546A control register using the write mode shown in Figure 8.

Start Condition
R/W ACK From Slave
ACK From Slave Stop Condition
Figure 8. Write Control Register
Data is read from the PCA9546A control register using the read mode shown in Figure 9.

Figure 9. Read Control Register

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	7	V
V_{1}	Input voltage range ${ }^{(2)}$		-0.5	7	V
I_{1}	Input current			± 20	mA
I_{0}	Output current			± 25	mA
Continuous current through V CC				± 100	mA
Continuous current through GND				± 100	mA
$\theta_{\mathrm{JA}} \quad$ Package thermal impedance ${ }^{(3)}$		D package		73	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DGV package		120	
		DW package		57	
		PW package		108	
		RGV package		51.38	
		RGY package		50	
$\mathrm{P}_{\text {tot }}$	Total power dissipation			400	mW
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating free-air temperature range		-40	85	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
(3) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{(1)}$

			MIN	MAX	UNIT
V_{CC}	Supply voltage		2.3	5.5	V
		SCL, SDA	$0.7 \times \mathrm{V}_{\text {CC }}$	6	V
V_{IH}	Hign-level input voltage	A2-A0, RESET	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{C C}+0.5$	
		SCL, SDA	-0.5	$0.3 \times \mathrm{V}_{\text {CC }}$	V
VIL	Low-level input voltage	A2-A0, RESET	-0.5	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	
T_{A}	Operating free-air tempe		-40	85	${ }^{\circ} \mathrm{C}$

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS		V_{Cc}	MIN	TYP ${ }^{(1)}$	MAX	$\begin{gathered} \hline \text { UNIT } \\ \hline \mathrm{V} \\ \hline \end{gathered}$	
$\mathrm{V}_{\mathrm{POR}}$	Power-on reset voltage ${ }^{(2)}$		No load,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	$\mathrm{V}_{\mathrm{POR}}$		1.6	2.1		
$V_{\text {pass }}$	Switch output voltage		$\mathrm{V}_{\text {SWin }}=\mathrm{V}_{\mathrm{CC}}$,	$\mathrm{Is}_{\text {Sout }}=-100 \mu \mathrm{~A}$	5 V		3.6		V	
			4.5 V to 5.5 V		2.6		4.5			
			3.3 V			1.9				
			3 V to 3.6 V		1.6		2.8			
			2.5 V			1.5				
			2.3 V to 2.7 V		1.1		2			
l_{OL}	SCL, SDA			$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		2.3 V to 5.5 V	3	7		mA
			$\mathrm{V}_{\mathrm{OL}}=0.6 \mathrm{~V}$	6	10					
1	SCL, SDA			$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}$		2.3 V to 5.5 V			± 1	$\mu \mathrm{A}$
	SC3-SC0, SD3-SD0							± 1		
	A2-A0							± 1		
	RESET							± 1		
Icc	Operating mode	$\mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND,	$\mathrm{I}_{0}=0$	5.5 V			3	12	$\mu \mathrm{A}$
					3.6 V			3	11	
					2.7 V			3	10	
	Standby mode	Low inputs	$\mathrm{V}_{\mathrm{l}}=\mathrm{GND}$,	$\mathrm{l}_{0}=0$	5.5 V		0.3	1		
					3.6 V		0.1	1		
					2.7 V		0.1	1		
		High inputs	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$,	$\mathrm{I}_{0}=0$	5.5 V		0.3	1		
					3.6 V		0.1	1		
					2.7 V		0.1	1		
$\Delta \mathrm{l}_{\text {cc }}$	Supply-current change	SCL, SDA	SCL or SDA input at 0.6 V , Other inputs at V_{CC} or GND				8	15	$\mu \mathrm{A}$	
			SCL or SDA input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND		2.3 V to 5.5 V		8	15		
C_{i}	A2-A0		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		2.3 V to 5.5 V		4.5	6	pF	
	RESET					4.5	5.5			
$\mathrm{C}_{\mathrm{io}(\mathrm{OFF})}{ }^{(3)}$	SCL, SDA		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND,	Switch OFF		2.3 V to 5.5 V		15	19	pF
	SC3-SC0, SD3-SD0						6	8		
R_{ON}	Switch on-state resistance		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}$	4.5 V to 5.5 V	4	9	16	Ω	
			3 V to 3.6 V		5	11	20			
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$,	$\mathrm{I}_{0}=10 \mathrm{~mA}$	2.3 V to 2.7 V	7	16	45		

(1) All typical values are at nominal supply voltage ($2.5-\mathrm{V}, 3.3-\mathrm{V}$, or $5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) The power-on reset circuit resets the $I^{2} \mathrm{C}$ bus logic with $\mathrm{V}_{C C}<\mathrm{V}_{P O R}$. $\mathrm{V}_{C C}$ must be lowered to 0.2 V to reset the device.
(3) $\mathrm{C}_{\mathrm{io}(\mathrm{ON})}$ depends on internal capacitance and external capacitance added to the SCn lines when channels(s) are ON .

WITH RESET FUNCTION
SCPS148E-OCTOBER 2005-REVISED JANUARY 2008

$I^{2} \mathrm{C}$ Interface Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 10)

			STANDARD MODE $1^{2} \mathrm{C}$ BUS	FAST MODE $I^{2} \mathrm{C}$ BUS	UNIT
			MIN MAX	MIN MAX	
$\mathrm{f}_{\text {scl }}$	$\mathrm{I}^{2} \mathrm{C}$ clock frequency		0100	$0 \quad 400$	kHz
$\mathrm{t}_{\text {sch }}$	$1^{2} \mathrm{C}$ clock high time		4	0.6	$\mu \mathrm{s}$
$\mathrm{t}_{\text {scl }}$	$1^{2} \mathrm{C}$ clock low time		4.7	1.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {sp }}$	$1^{2} \mathrm{C}$ spike time		50	50	ns
$\mathrm{t}_{\text {sds }}$	$1^{2} \mathrm{C}$ serial-data setup time		250	100	ns
$\mathrm{t}_{\text {sah }}$	$1^{2} \mathrm{C}$ serial-data hold time		$0^{(1)}$	$0^{(1)}$	$\mu \mathrm{s}$
$\mathrm{t}_{\text {icr }}$	$1^{2} \mathrm{C}$ input rise time		1000	$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(2)} \quad 300$	ns
$\mathrm{t}_{\text {cff }}$	$1^{2} \mathrm{C}$ input fall time		300	$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(2)} \quad 300$	ns
$\mathrm{t}_{\text {ocf }}$	$1^{2} \mathrm{C}$ output fall time	$10-\mathrm{pF}$ to $400-\mathrm{pF}$ bus	300	$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(2)} \quad 300$	ns
$\mathrm{t}_{\text {buf }}$	$I^{2} \mathrm{C}$ bus free time between stop and	start	4.7	1.3	$\mu \mathrm{S}$
$\mathrm{t}_{\text {sts }}$	$1^{2} \mathrm{C}$ start or repeated start conditio	setup	4.7	0.6	$\mu \mathrm{s}$
$\mathrm{t}_{\text {sth }}$	$\mathrm{I}^{2} \mathrm{C}$ start or repeated start conditio	hold	4	0.6	$\mu \mathrm{s}$
$\mathrm{t}_{\text {sps }}$	$1^{2} \mathrm{C}$ stop condition setup		4	0.6	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{vdL}}$ (Data)	Valid-data time (high to low) ${ }^{(3)}$	SCL low to SDA output low valid	1	1	$\mu \mathrm{S}$
$\mathrm{tvaH}_{\text {(Data) }}$	Valid-data time (low to high) ${ }^{(3)}$	SCL low to SDA output high valid	0.6	0.6	$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{v}}($ (ack)	Valid-data time of ACK condition	ACK signal from SCL low to SDA output low	1	1	$\mu \mathrm{S}$
C_{b}	$1^{2} \mathrm{C}$ bus capacitive load		400	400	pF

(1) A device internally must provide a hold time of at least 300 ns for the SDA signal (referred to the V_{IH} min of the SCL signal), in order to bridge the undefined region of the falling edge of SCL.
(2) $\mathrm{C}_{\mathrm{b}}=$ total bus capacitance of one bus line in pF
(3) Data taken using a $1-\mathrm{k} \Omega$ pullup resistor and $50-\mathrm{pF}$ load (see Figure 10)

Switching Characteristics

over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$ (unless otherwise noted) (see Figure 10)

PARAMETER			FROM (INPUT)	TO (OUTPUT)	MIN MAX	UNIT
$\mathrm{tpd}{ }^{(1)}$	Propagation delay time	$\mathrm{R}_{\mathrm{ON}}=20 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	SDA or SCL	SDn or SCn	0.3	ns
		$\mathrm{R}_{\mathrm{ON}}=20 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			1	

(1) The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

Interrupt and Reset Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		MIN	MAX	UNIT
$\mathrm{t}_{\text {WL }}$	Pulse duration, $\overline{\text { RESET }}$ low	6		ns
$\mathrm{trst}^{(1)}$	$\overline{\text { RESET }}$ time (SDA clear)		500	ns
$\mathrm{t}_{\text {REC(STA) }}$	Recovery time from RESET to start	0		ns

(1) $t_{r s t}$ is the propagation delay measured from the time the RESET pin is first asserted low to the time the SDA pin is asserted high, signaling a stop condition. It must be a minimum of $t_{W L}$.

PARAMETER MEASUREMENT INFORMATION

${ }^{2}{ }^{2} \mathrm{C}$ PORT LOAD CONFIGURATION

BYTE	DESCRIPTION
1	${ }^{2} \mathrm{C}$ address $+\mathrm{R} / \overline{\mathrm{W}}$
2	Control register data

VOLTAGE WAVEFORMS
A. $\quad C_{L}$ includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, $\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}} \leq 30 \mathrm{~ns}$.
C. The outputs are measured one at a time, with one transition per measurement.

Figure 10. ${ }^{2}$ C Interface Load Circuit, Byte Descriptions, and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 11. Reset Timing

APPLICATION INFORMATION

Figure 12 shows an application in which the PCA9546A can be used.

A. Pin numbers shown are for the D, DGV, DW, PW, and RGY packages.

Figure 12. Typical Application

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
PCA9546AD	ACTIVE	SOIC	D	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ADGVR	ACTIVE	TVSOP	DGV	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ADGVRG4	ACTIVE	TVSOP	DGV	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ADT	ACTIVE	SOIC	D	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ADTG4	ACTIVE	SOIC	D	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ADW	ACTIVE	SOIC	DW	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ADWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ADWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ADWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546APW	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546APWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546APWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546APWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546APWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546APWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546APWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546APWTE4	ACTIVE	TSSOP	PW	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546APWTG4	ACTIVE	TSSOP	PW	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9546ARGVR	ACTIVE	VQFN	RGV	16	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
PCA9546ARGVRG4	ACTIVE	VQFN	RGV	16	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
PCA9546ARGYR	ACTIVE	VQFN	RGY	16	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
PCA9546ARGYRG4	ACTIVE	VQFN	RGY	16	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	$\mathbf{B 0} \mathbf{(m)}$ $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
PCA9546ADGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
PCA9546ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
PCA9546ADWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
PCA9546APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
PCA9546ARGVR	VQFN	RGV	16	2500	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
PCA9546ARGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PCA9546ADGVR	TVSOP	DGV	16	2000	346.0	346.0	29.0
PCA9546ADR	SOIC	D	16	2500	333.2	345.9	28.6
PCA9546ADWR	SOIC	DW	16	2000	346.0	346.0	33.0
PCA9546APWR	TSSOP	PW	16	2000	346.0	346.0	29.0
PCA9546ARGVR	VQFN	RGV	16	2500	346.0	346.0	29.0
PCA9546ARGYR	VQFN	RGY	16	3000	346.0	346.0	29.0

D (R-PDSO-G16) PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
(D) Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AC.

THERMAL PAD MECHANICAL DATA
RGY (R-PVQFN-N16) PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http: //www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.

D The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
E. Falls within JEDEC MO-220.

THERMAL PAD MECHANICAL DATA
RGV (S-PVQFN-N16) PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View
NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RGV (S-PVQFN-N16)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http: //www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for solder mask tolerances.

DW (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AA.

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	$\underline{\text { amplifier.ti.com }}$
Data Converters	$\underline{\text { dataconverter.ti.com }}$
DLP® Products	$\underline{\text { www.dlp.com }}$
DSP	$\underline{\text { www.ti.com }}$
Clocks and Timers	$\underline{\text { interface.ti.com }}$
Interface	$\underline{\text { logic.ti.com }}$
Logic	$\underline{\text { power.ti.com }}$
Power Mgmt	$\underline{\text { www.ti-rfid.com }}$
Microcontrollers	

RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications

Audio	$\underline{\text { www.ti.com/audio }}$
Automotive	
Communications and	
Telecom	
Computers and	
Peripherals	$\underline{\text { www.ti.com/automotive }}$
Consumer Electronics	$\underline{\text { www.ti.com/computers }}$
Energy	$\underline{\text { www.ti.com/consumer-apps }}$
Industrial	$\underline{\text { www.ti.com/energy }}$
Medical	$\underline{\text { www.ti.com/industrial }}$
Security	$\underline{\text { www.ti.com/security }}$
Defense	$\underline{\text { www.ti.com/space-avionics-defense }}$
Video and Imaging	$\underline{\text { www.ti.com/wireless-apps }}$
Wireless	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

