

TIC116A, TIC116B, TIC116C, TIC116D, TIC116E, TIC116M, TIC116N, TIC116S

P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS

- 8 A Continuous On-State Current
- 80 A Surge-Current
- Glass Passivated Wafer
- 100 V to 800 V Off-State Voltage
- Max I_{GT} of 20 mA
- Compliance to ROHS

ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings		Value							
		Α	В	С	D	Е	M	S	N	
V _{DRM}	Repetitive peak off-state voltage (see Note1)	100	200	300	400	500	600	700	800	V
V_{RRM}	Repetitive peak reverse voltage	100	200	300	400	500	600	700	800	V
I _{T(RMS)}	Continuous on-state current at (or below) 70°C case temperature (see note2)	8						Α		
I _{T(AV)}	Average on-state current (180° conduction angle) at(or below) 70°C case temperature (see Note3)						Α			
I _{TM}	Surge on-state current (see Note4)	80							Α	
I _{GM}	Peak positive gate current (pulse width ≤300 µs)						Α			
P _{GM}	Peak power dissipation (pulse width ≤300 µs) 5				W					
P _{G(AV)}	Average gate power dissipation (see Note5)					W				
T _C	Operating case temperature range	-40 to +110							°C	
T _{stg}	Storage temperature range	-40 to +125						°C		
TL	Lead temperature 1.6 mm from case for 10 seconds	230						°C		

Notes:

- 1. These values apply when the gate-cathode resistance $R_{GK} = 1k\Omega$
- 2. These values apply for continuous dc operation with resistive load. Above 70°C derate linearly to zero at 110°C.
- 3. This value may be applied continuously under single phase 50 Hz half-sine-wave operation with resistive load. Above 70°C derate linearly to zero at 110°C.
- 4. This value applies for one 50 Hz half-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
- 5. This value applies for a maximum averaging time of 20 ms.

TIC116A, TIC116B, TIC116C, TIC116D, TIC116E, TIC116M, TIC116N, TIC116S

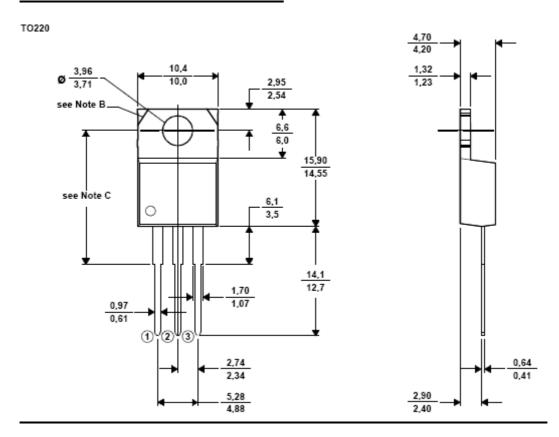
THERMAL CHARACTERISTICS

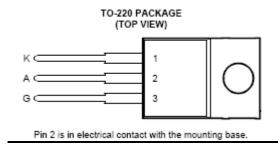
Symbol	Ratings		Value	Unit
t _{gt}	Gate-controlled Turn-on time	$V_{AA} = 30 \text{ V}, R_L = 6 \Omega,$ $R_{GK(eff)} = 100 \Omega, V_{in} = 20 \text{ V}$	0.8	LIC.
tq	Circuit-communicated Turn-off time	V_{AA} = 30 V, R_L = 6 Ω , I_{RM} \approx 10 A	11	μs
R _{∂JC}			≤ 3	°C/W
R∂JA			≤ 62.5	C/VV

ELECTRICAL CHARACTERISTICS

TC=25°C unless otherwise noted

Symbol	Ratings	Test Condition(s)	Min	Тур	Mx	Unit
I _{DRM}	Repetitive peak off-state current	V_D = Rated V_{DRM} , R_{GK} = 1 k Ω , T_C = 110°C	i	-	2	mA
I _{RRM}	Repetitive peak reverse current	V_R = Rated V_{RRM} , I_G = 0, T_C = 110°C	ı	_	2	mA
I _{GT}	Gate trigger current	V_{AA} = 6 V, R _L = 100 Ω, $t_{p(q)} \ge 20 \mu s$	ı	5	20	mA
		V_{AA} = 6 V, R _L = 100 Ω, R _{GK} = 1 kΩ, t _{p(g)} ≥ 20μs, T _C = -40°C	-	-	2.5	
\mathbf{V}_{GT}	Gate trigger voltage	V_{AA} = 6 V, R _L = 100 Ω, R _{GK} = 1 kΩ, t _{p(g)} ≥ 20μs,	_	0.8	1.5	V
		V_{AA} = 6 V, R _L = 100 Ω, R _{GK} = 1 kΩ, t _{p(g)} ≥ 20μs, T _C = 110°C	0.2	-	-	
I _H	Holding current	V_{AA} = 6 V, R_{GK} = 1 k Ω , initiating I_T = 100 mA	-	-	- 40	
		V_{AA} = 6 V, R_{GK} = 1 kΩ, initiating I_T = 100 mA, T_C = -40°C	-	_	70	mA
V _{TM}	Peak on-state voltage	I _{TM} = 8A (see Note6)	-	-	1.7	V
dv/dt	Critical rate of rise of off-state voltage	V_D = Rated V_D , T_C = 110°C	1	100	-	V/µs


Note 6:


This parameters must be measured using pulse techniques, $t_W = 300\mu s$, duty cycle ≤ 2 %, voltage-sensing contacts, separate from the courrent-carrying contacts, are located within 3.2mm (1/8 inch) from de device body.

TIC116A, TIC116B, TIC116C, TIC116D, TIC116E, TIC116M, TIC116N, TIC116S

MECHANICAL DATA CASE TO-220

Pin 1 :	kathode
Pin 2 :	Anode
Pin 3 :	Gate