

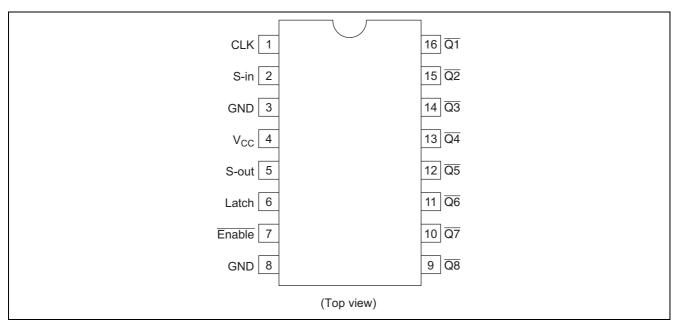
RD30LDT595

8-bit Serial-in Parallel-out LED Driver IC

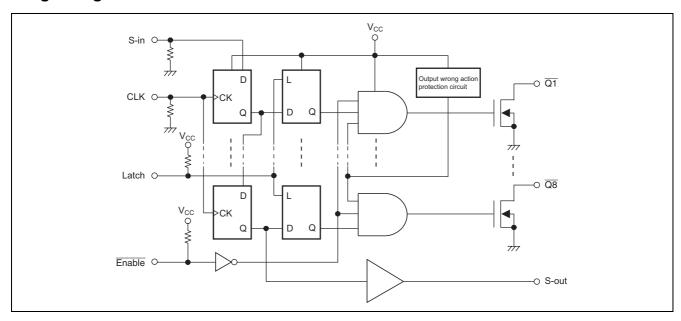
REJ03D0906-0200 Rev.2.00 Jun 16, 2008

Description

The RD30LDT595 has eight edge trigger D-type Flip-Flops with eight latches in 16-pin package. Data is input to the serial data input and the clock pulse is input to the clock input. When the clock is changed from "L" to "H", the signal of the data input enters an internal shift register. The data of the shift register is shifted one by one. In addition, output load circuit is added so that power supply prevents a wrong action in on/off. When Vcc is less than a fixed level, the output $(\overline{Q1} \text{ to } \overline{Q8})$ compulsorily is off state. Low-voltage and high-speed operation is suitable for battery-powered product (e.g., notebook computers), and the low-power consumption extends the battery life.


Features

- Supply voltage range : $4.5 \text{ to } 5.5 \text{ V}, V_0 = 30 \text{V}$
- Output current : $I_0 = 100 \text{ mA}$ (@ $V_{CC} = 5 \text{ V}$)
- All the logical input has hysteresis voltage for the slow transition.
- Input with pull-up resistance. (Enable, Latch terminal)
- Input with pull-down resistance. (CLK, S-in terminal)
- Ordering Information


Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)	Surface Treatment
RD30LDT595PT0	DILP-16 pin	PRDP0016AE-B (DP-16FV)	Р	T (1,000 pcs/reel)	0 (Ni/Pd/Au)
RD30LDT595FPH0	SOP-16 pin	PRSP0016DH-B (FP-16DAV)	FP	H (2,000 pcs/reel)	0 (Ni/Pd/Au)

Note: Please consult the sales office for the above package availability.

Pin Arrangement

Logic Diagram

Function Table

	Inp	Out	puts		
S-in	CLK *1	Latch	Enable	Q1 to Q8	S-out
L	IN	L	L	t - 1	L
L	IN	Н	L	Z	L
Н	IN	L	L	t - 1	Н
Н	IN	Н	L	L	Н
Н	IN	Н	Н	Z	Н

 $^{^{*1}}$ IN : Input the following signal in CLK

H : High levelL : Low levelZ : High impedance

t - 1 : Output level before the indicated steady state input conditions were established.

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	V _{CC}	-0.5 to 7	V	
Input voltage range	VI	-0.5 to V _{CC} + 0.5	V	
Output voltage range *1,	Vo	-0.5 to 30	V	Output : Z (OFF)
Output voltage range	V _O	-0.5 to V _{CC} + 0.5	V	S-out
Continuous output current	I _O	100	mA	V _O = 0 to V _{CC}
Maximum power dissipation	Pd	1.19	w	DILP
at Ta = 25°C (in still air) *2	Fd	0.79	vv	SOP
Storage temperature	Tstg	-65 to 150	°C	

Notes: The absolute maximum ratings are values which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

- 1. This value is limited to 30 V maximum.
- 2. The maximum package power dissipation was calculated using a junction temperature of 150°C.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions		
Supply voltage range	V_{CC}	4.5	5.5	V			
Output voltage range	Vo	_	30	V	Q1 to Q8 : Z (OFF)		
Output ourrent (per pin)	rrent (per pin) I _O	0	100	mA	DILP	Duty cycle ≤ 100%	Q1 to Q8 : ON
Output current (per pin)		0	100	mA	SOP	Duty cycle ≤ 60%	Q1 10 Q8 . ON
Operating free-air temperature	Ta	-40	85	°C		•	

Note: Unused or floating inputs must be held high or low.

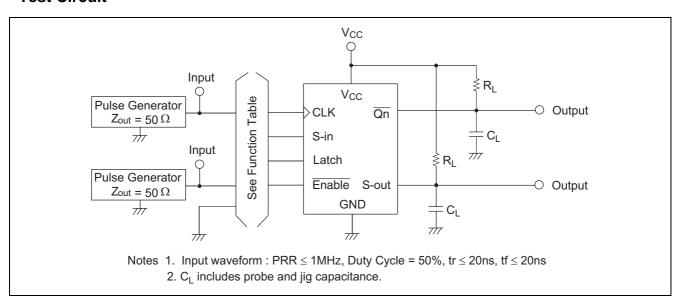
Electrical Characteristic

Item	Symbol	V _{CC} (V) *	7	Ta = 25°0)	Ta =	-40 to	85°C	Unit	Test condition
item	Symbol	VCC (V)	Min	Тур	Max	Min	Тур	Max	Joint	rest condition
Input voltage	V _{IH}	4.5 to 5.5	2.0	_	V_{CC}	2.0		V _{CC}	V	
input voitage	V _{IL}	4.5 to 5.5	0	_	0.8	0		0.8	V	
Input current	I _{IH}	5.5	_	_	25	ı		30	μΑ	V _{IH} = 5.5 V
input current	I_{IL}	5.5	_	_	-25	_		-30	μΑ	V _{IL} = 0 V
Output voltage	V _{OH}	5.0	4.9	_		4.9		_	V	$I_{OH} = -1 \mu A$
(S-out)	V _{OL}	5.0	_	_	0.1	ı		0.1	V	I _{OL} = 1 μA
Output voltage $(\overline{Q1} \text{ to } \overline{Q8})$	V _{OL}	5.0	_	_	0.55		_	0.77	٧	I _{OL} = 100 mA
Output leakage current	I _{OLK}	5.5	_	_	50		_	100	μΑ	V _O = 30 V (Output : Z (OFF))
Quiescent supply	I _{CC} 1	5.5	_		300	ı	_	500	μΑ	Input : Open All driver output : OFF
curcii	I _{CC} 2	5.5	_		300	l	_	500	μА	Driver output one circuit : ON
Driver output wrong	V _T +	_	2.9	3.4	3.9	2.6	3.4	4.2	V	
action protection voltage	V _T -	_	2.6	3.1	3.6	2.3	3.1	3.9	V	

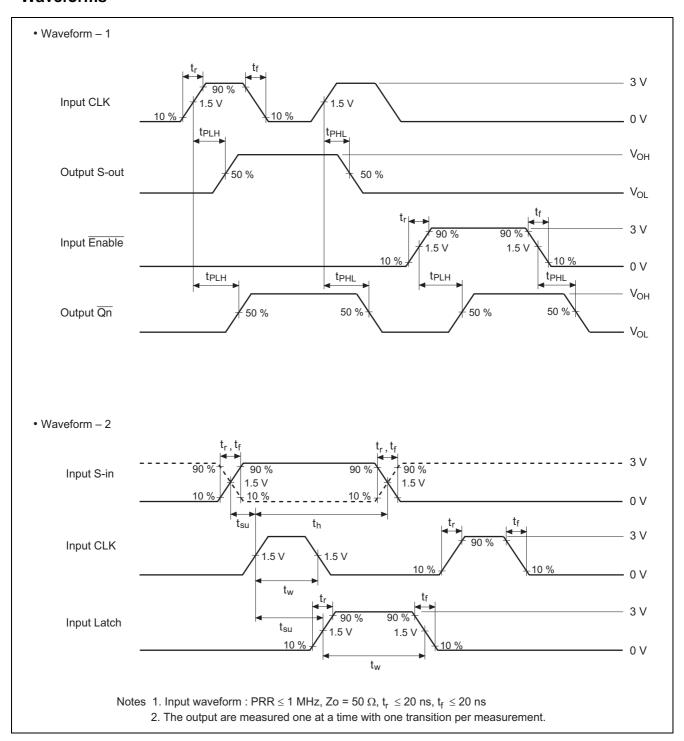
Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Timing Characteristics

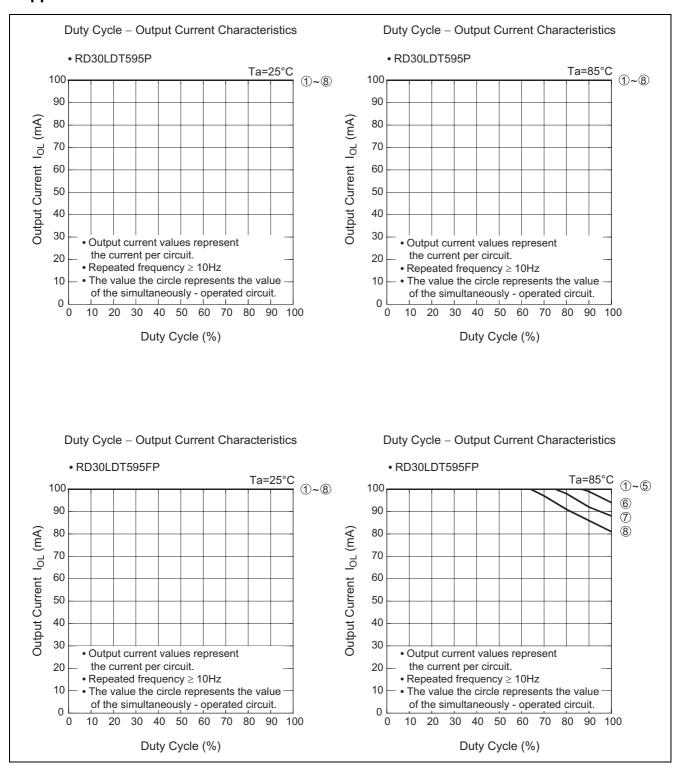
$$(V_{CC} = 5 \text{ V}, C_L = 15 \text{ pF}, R_L (S-\text{out}) = \infty, R_L (\overline{Qn}) = 100 \Omega, t_r = t_f = 20 \text{ ns})$$

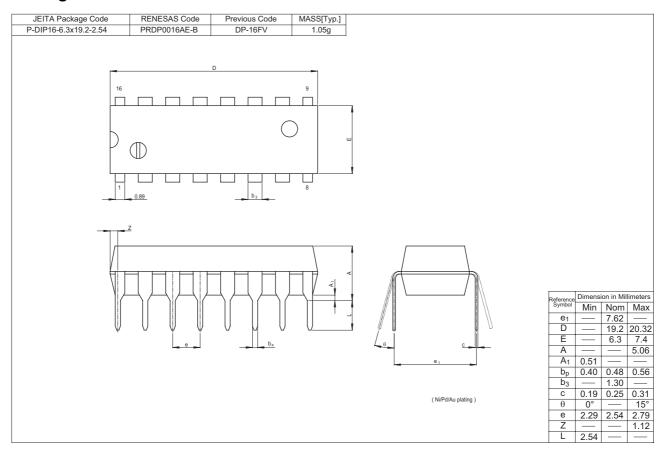

Itom	Item Symbol		Ta = 25°C			= -40 to 8	5°C	Unit	Test condition
item	Symbol	Min	Тур	Max	Min	Тур	Max	Onit	rest condition
Maximum clock frequency	f_{max}	_	_	12.5	_	_	12.5	MHz	Duty cycle = 45 % to 55 %
Pulse width	t _W	30	_	_	30	_	_	ns	CLK
Pulse width	t _W	30	1	1	30		_	ns	Latch
Setup time	t_{su}	30			30		_	ns	S-in to CLK
Hold time	t _h	20			20		_	ns	S-in to CLK
Setup time	t_{su}	60			60		_	ns	Latch to CLK
Clock pulse rise time	t _r	_	_	500	_	_	500	ns	-
Clock pulse fall time	t _f	_	_	500	_	_	500	ns	-

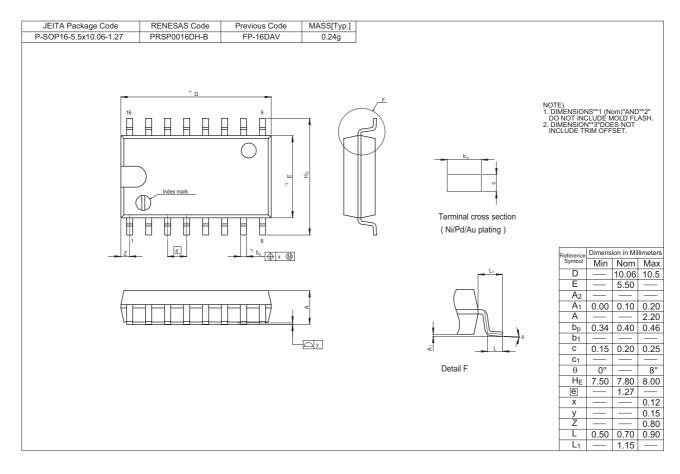
Switching Characteristics


$$(V_{CC} = 5 \text{ V}, C_L = 15 \text{ pF}, R_L(\text{S-out}) = \infty, R_L(\overline{\text{Qn}}) = 100 \Omega, t_r = t_f = 20 \text{ ns})$$

Itom	Symbol		Га = 25°C	= 25°C Ta = -40 to 85°C			35°C	Unit	FROM	то
Item	Syllibol	Min	Тур	Max	Min	Тур	Max	Oilit	(Input)	(Output)
	t _{PLH}		_	60			60	ne	CLK	S-out
	t _{PHL}	_	_	60	_	_	60	ns	CLK	3-0ut
Propagation delay time	t _{PLH}	_	_	70	_	_	70	ns	CLK	Qn
Propagation delay time	t _{PHL}	_	_	70	_	_	70	115	CLK	QII
	t _{PLH}	_	_	70	_	_	70	ns	Enable	Qn
	t _{PHL}	_	_	70	_	_	70	115	Enable	QII


Test Circuit


Waveforms



Application Data

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510