RV20 Series

20mm Diameter, Single-Turn, Carbon Industrial Panel Controls

Features.

- 20mm diameter, single-turn industrial panel controls Carbon film element Single unit, single shaft
 - Linear or audio tapers Metal shaft and bushing Optional shaft lock models available
- 6mm diameter metal shafts in slot, flat or round end styles Standard 10mm, 15mm or 20mm shaft length
 - Panel or PC board mounting styles Rear exit lug or pin terminals Wide standard resistance range

Specifications_

Electrical

$A,C = 2k\Omega \ to \ 2M\Omega$ Resistance Tolerance $\pm 10\%$ standard End Resistance $\pm 3\Omega$ max. Resistance Taper $B = linear; A = CW$ audio (logarithm); $C = CCW$ audio (logarithm) Peak Noise (C.R.V.) 3% or 3Ω , whichever is greater Power Rating $B = 0.25$ watt; $A,C = 0.125$ watt at $+40^{\circ}C$, 0 watt at $+85^{\circ}C$ Maximum Input Voltage 250VDC or power rating, whichever is smaller Insulation Resistance $100M\Omega$ minimum at 500VDC Dielectric Strength 500VAC , 1 minute Adjustment Travel $230^{\circ}\pm 10^{\circ}$	Standard Resistance Range B = 100Ω to $2M\Omega$
	$A,C = 2k\Omega \text{ to } 2M\Omega$
$\label{eq:Resistance Taper} \begin{tabular}{ll} B = linear; A = CW audio (logarithm); $$ C = CCW audio (logarithm); $$ C = CCW audio (logarithm); $$ P eak Noise (C.R.V.) $$ 3% or 3Ω, whichever is greater $$ P ower Rating $$ $$ B$ = 0.25 watt; $$ A$, C = 0.125 watt at $+40^{\circ}$C, 0 watt at $+85^{\circ}$C $$ $$ Maximum Input Voltage $$ $$ $$ $$ $$ 250 VDC or power rating, whichever is smaller $$ Insulation Resistance $$$	Resistance Tolerance ±10% standard
$C = CCW \ audio \ (logarithm)$ Peak Noise (C.R.V.) 3% or 3Ω , whichever is greater Power Rating B = 0.25 watt; A,C = 0.125 watt at +40°C, 0 watt at +85°C Maximum Input Voltage 250VDC or power rating, whichever is smaller Insulation Resistance	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
$\begin{tabular}{lllll} \textbf{Power Rating} &$	• , , , , , , , , , , , , , , , , , , ,
$at + 40^{\circ}\text{C}, \ 0 \ \text{watt} \ at + 85^{\circ}\text{C}$ $\textbf{Maximum Input Voltage} \dots 250 \text{VDC or power rating,} \\ \text{whichever is smaller}$ $\textbf{Insulation Resistance} \dots 100 \text{M}\Omega \ \text{minimum at } 500 \text{VDC}$ $\textbf{Dielectric Strength} \dots 500 \text{VAC}, 1 \ \text{minute}$	Peak Noise (C.R.V.) 3% or 3Ω , whichever is greater
$\label{eq:whichever is smaller} \mbox{ whichever is smaller} \\ \mbox{ Insulation Resistance} \dots 100 \mbox{M}\Omega \mbox{ minimum at } 500 \mbox{VDC} \\ \mbox{ Dielectric Strength} \dots \dots 500 \mbox{VAC}, 1 \mbox{ minute} \\$	
Dielectric Strength 500VAC, 1 minute	
- · · · · · · · · · · · · · · · · · · ·	Insulation Resistance 100 M Ω minimum at 500 VDC
Adjustment Travel	Dielectric Strength 500VAC, 1 minute
	Adjustment Travel

Mechanical

Mechanical Travel	260°±10°
Shaft Torque 5	0 to 300 gf • cm (0.693 to 4.159 oz • in)
Stop Strength	6 kgf•cm (83.176 oz•in) max.
Mounting Nut Torque	15 kgf•cm (207.94 oz•in) max.
Solderability	235°C, 5 seconds
	. Model type, taper, resistance code, ype, terminal identification, date code

Environmental

Temperature Range	°C to +85°C
Temperature Characteristics +8 $R < 10k\Omega \rightarrow \Delta$ $10k\Omega \le R < 1M\Omega \rightarrow \Delta$ $R \ge 1M\Omega \rightarrow \Delta$	without load ΔT/R ≦±6% T/R ≦±10%
Load Life +40°C, 90 minutes on, 30 1,000 hours with Δ	,
Moisture and Load Life +40°C, 90 minutes on, 30 500 hours wit $R < 100k\Omega \rightarrow \Delta T/R \leqq -1 \\ R \geqq 100k\Omega \rightarrow \Delta T/R \leqq -1$	minutes off, th rated load 10%~+15%
Soldering Heat Resistance	C, 3 seconds ∆T/R ≦±2%
Rotational Life	without load ∆T/R≦±7%

RV20YN Unit: mm

Panel Mount, Single Unit, Single Shaft Rear Exit Vertical Lug Terminals, 3-Lug Triangular Pattern

Recommended Panel Mounting Holes

RV20YL
Panel Mount, Single Unit, Single Shaft with Shaft Lock
Rear Exit Vertical Lug Terminals, 3-Lug Triangular Pattern

Recommended Panel Mounting Holes

RV20YP1
PCB Mount, Single Unit, Single Shaft
Rear Exit Vertical Mount Pin Terminals, 3-Pin Triangular Pattern

Recommended PCB Mounting Holes

Standard Resistance Values and Part Numbering Codes

Standard Nominal Total Resistance Values and Part Numbering Codes

Resistance (Ω)	Code								
100	101	1,000	102	10,000	103	100,000	104	1,000,000	105
200	201	2,000	202	20,000	203	200,000	204	2,000,000	205
500	501	5,000	502	50,000	503	500,000	504		

Refer to Shaft End Styles Specifications and Hardware Specifications for details and availability. For additional information, refer to Guidelines and Precautions for Using Panel Controls.