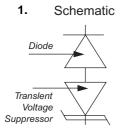
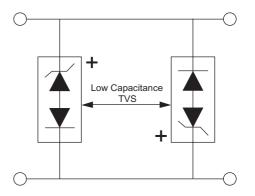


Type Number	Symbol	Value	Units	
Peak Power Dissipation at $T_A=25^{\circ}C$, Tp=1ms (Note 1)	P _{PK}	Minimum 500	Watts	
Steady State Power Dissipation at $T_L=75$ ^O C Lead Lengths .375", 9.5mm	P _D	3.0	Watts	
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to + 175	Oo	


Notes: 1. Non-repetitive Current Pulse Per Fig. 3 and Derated above $T_A=25^{\circ}C$ Per Fig. 2.


	Breakdown Voltage		Test	Stand-Off	Maximum	Maximum	Maximum	Maximum
Device		VBR	Current	Voltage	Reverse Leakage	Peak Pulse	Clamping	Temperature
	(Volts)	(Note 1)	@IT	VWM	at VWM	Current IPPM	Voltage at IPPM	Coefficient
	Min	Max	(mA)	(Volts)	ID (uA)	(Note 2)(Amps)	VC(Volts)	of VBR mV / ^o C)
SAC5.0	7.60	9.21	1.0	5.0	300	44	10.00	50
SAC6.0	7.90	9.51	1.0	6.0	300	41	11.2	50
SAC7.0	8.33	10.2	1.0	7.0	300	38	12.6	50
SAC8.0	8.89	10.9	1.0	8.0	100	36	13.4	50
SAC8.5	9.44	11.5	1.0	8.5	50	34	14.0	50
SAC10	11.10	13.6	1.0	10	5.0	29	16.3	50
SAC12	13.30	16.3	1.0	12	5.0	25	19.0	50
SAC15	16.70	20.4	1.0	15	5.0	20	23.6	50
SAC18	20.00	24.4	1.0	18	5.0	15	28.8	50
SAC22	24.40	29.8	1.0	22	5.0	14	35.4	50
SAC26	28.90	35.3	1.0	26	5.0	11.1	42.3	50
SAC30	33.30	40.7	1.0	30	5.0	10.0	48.6	50
SAC36	40.00	48.9	1.0	36	5.0	8.6	60.0	50
SAC45	50.00	61.1	1.0	45	5.0	6.8	77.0	50
SAC50	55.50	68.3	1.0	50	5.0	5.8	88.0	50

ELECTRICAL CHARACTERISTICS (TA=25^oC unless otherwise noted)

Note: There are A suffix for types SAC 5.0 thru type SAC 50. "A" : + / - 5% tolerance.

Notes:

2. Device must be used with two units in parallel, opposite in polarity as shown in circuit for AC signal line protection

Characteristics and Application

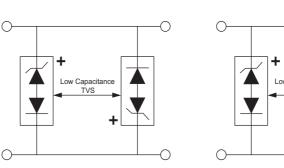
SAC is a Transient Voltage Suppressor Diode in series with a compensation diode for low capacitance.

Transient Voltage Suppressors may be used at various points in a circuit to provide various degrees of protection.

Transient Voltage Suppressor provides excellent clamping capability.

Since the low incremental surge resistance.

For telecommunication : multi-protocol serial transceivers. Please refer as below:


- -) Cellular
- -) Universal series bus (USB) port production.
- -) Instrumentation.
- -) LAN / WAN equipment.
- -) Peripherals.
- -) High speed data lines.

Tow devices are used in parallel and opposite polarity for protecting one bi-directional ines (FIG. 1), or with a steeling diode for protecting one unidirectional (FIG. 2).

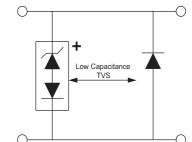
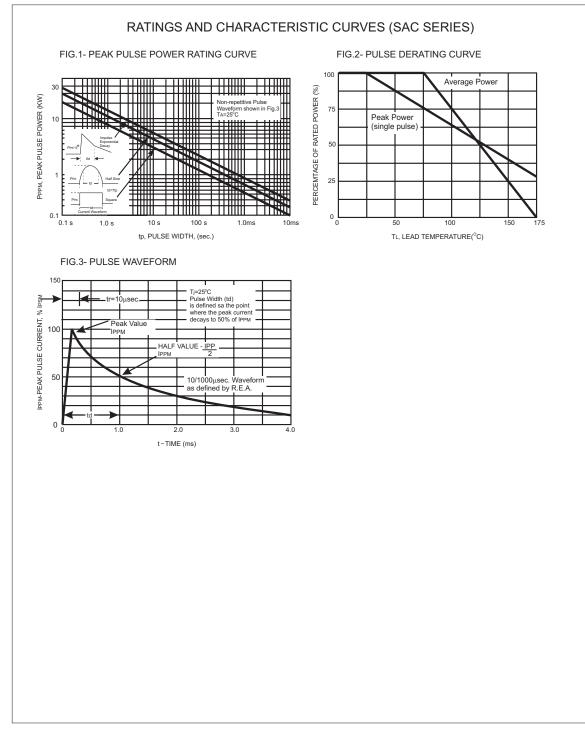

The low capacitance TVS series are used on high speeded interfaces such as video line, I²C RS-485, RS-422 and USB, for ESD protection the lines which have signal, or data. Please refer as below:

FIG. 1


- 1). Token Ring
- 2). I²C
- 3). Video line
- 4). Set top box I/O
- 5). LAN / WAN equipment.
- 6). Security system
- 7). Automatic teller machine
- 8). HFC system
- 9). Networks

Device must be used with two units in parallel, opposite in polarity as shown in circuit for AC signal line protection FIG. 2

