

Vishay Siliconix

Dual N-Channel 20-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	R_{DS(on)} (Ω)	I _D (mA)			
20	0.70 at V_{GS} = 4.5 V	600			
	0.85 at V_{GS} = 2.5 V	500			
	1.25 at V _{GS} = 1.8 V	350			

Ordering Information: Si1024X-T1-E3 (Lead (Pb)-free) Si1024X-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- Halogen-free Option Available
- TrenchFET[®] Power MOSFET: 1.8 V Rated
- Very Small Footprint
- High-Side Switching
- Low On-Resistance: 0.7 Ω
- Low Threshold: 0.8 V (typ.)
- Fast Switching Speed: 10 ns
- 1.8 V Operation
- Gate-Source ESD Protected: 2000 V

BENEFITS

- Ease in Driving Switches
- Low Offset (Error) Voltage
- Low-Voltage Operation
- High-Speed Circuits
- Low Battery Voltage Operation

APPLICATIONS

- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories
- Battery Operated Systems
- Power Supply Converter Circuits
- Load/Power Switching Cell Phones, Pagers

Parameter		Symbol	5 s	Steady State	Unit	
Drain-Source Voltage		V _{DS}	20		V	
Gate-Source Voltage		V _{GS}	± 6			
Continuous Drain Current (T _J = 150 °C) ^a	T _A = 25 °C	I _D	515	485	0	
	T _A = 85 °C		370	350		
Pulsed Drain Current ^b		I _{DM}	650		mA	
Continuous Source Current (Diode Conduction) ^a		۱ _S	450	380		
Maximum Power Dissipation ^a	T _A = 25 °C	P _D	280	250	mW	
	T _A = 85 °C		145	130		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		°C	
Gate-Source ESD Rating (HBM, Method 3015)		ESD	2000		V	

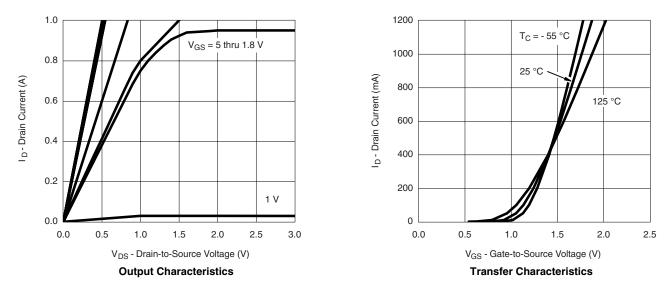
Notes:

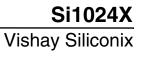
a. Surface Mounted on FR4 board.

b. Pulse width limited by maximum junction temperature.

Vishay Siliconix

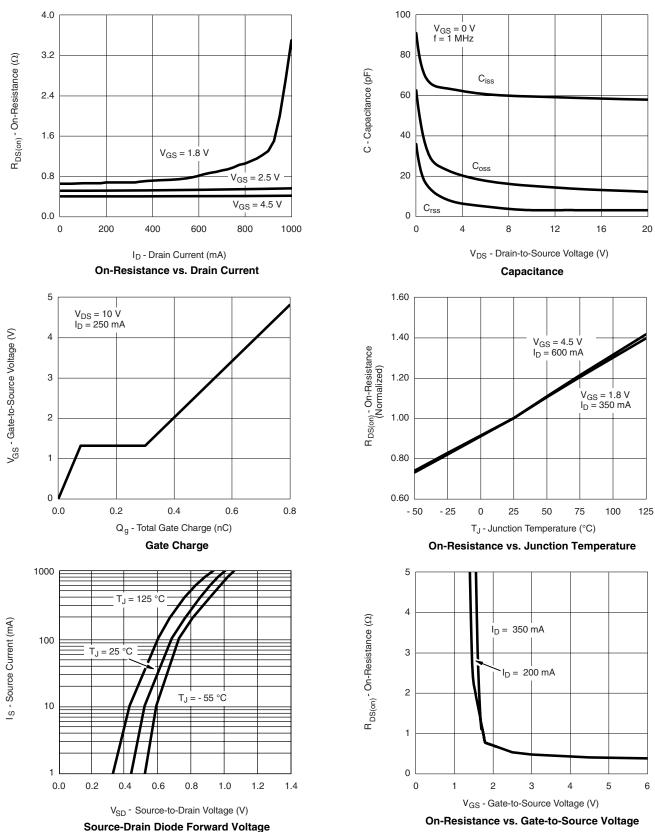
SPECIFICATIONS $T_J = 25 \text{ °C}$, unless otherwise noted								
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit		
Static								
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.45		0.9	V		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 4.5 V$		± 0.5	± 1.0	μA		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 20 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$		0.3	100	nA		
		V_{DS} = 20 V, V_{GS} = 0 V, T_{J} = 85 °C			5	μA		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 V, V_{GS} = 4.5 V$	700			mA		
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 600 \text{ mA}$		0.41	0.70	Ω		
		V _{GS} = 2.5 V, I _D = 500 mA		0.53	0.85			
		V _{GS} = 1.8 V, I _D = 350 mA		0.70	1.25			
Forward Transconductance ^a	9 _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 400 \text{ mA}$		1.0		S		
Diode Forward Voltage ^a	V _{SD}	I _S = 150 mA, V _{GS} = 0 V		0.8	1.2	V		
Dynamic ^b								
Total Gate Charge	Qg	V_{DS} = 10 V, V_{GS} = 4.5 V, I_{D} = 250 mA		750		рС		
Gate-Source Charge	Q _{gs}			75				
Gate-Drain Charge	Q _{gd}			225				
Turn-On Time	t _{d(on)}	V _{DD} = 10 V, R _L = 47 Ω		10		- ns		
Turn-Off Time	t _{d(off)}	$\text{I}_\text{D}\cong$ 200 mA, V_GEN = 4.5 V, R_G = 10 Ω		36				

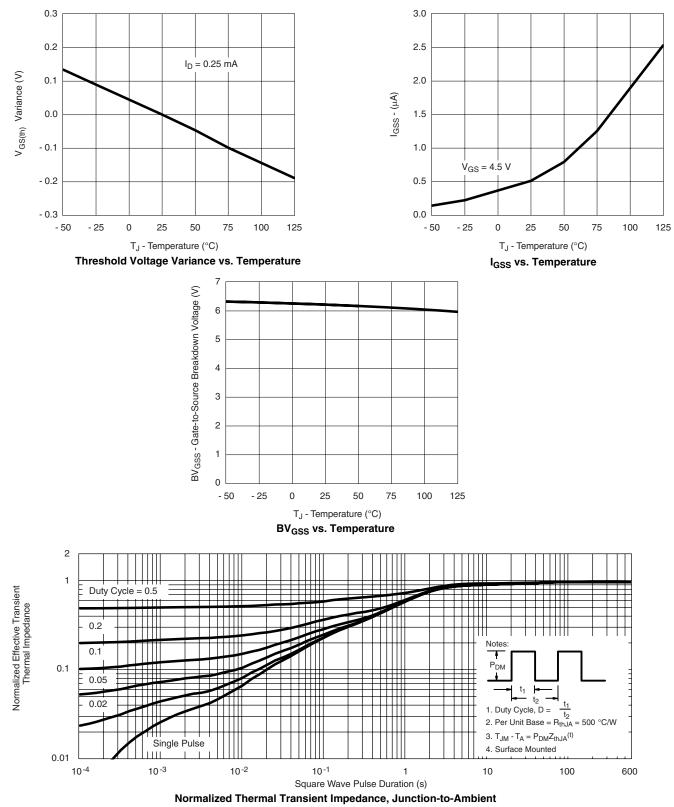

Notes:


a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted


TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

VISHAY

Document Number: 71170 S-80643-Rev. C, 24-Mar-08 Vishay Siliconix

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71170.

VISHAY

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.