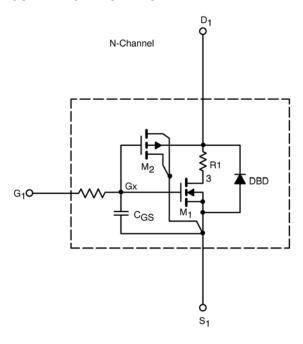


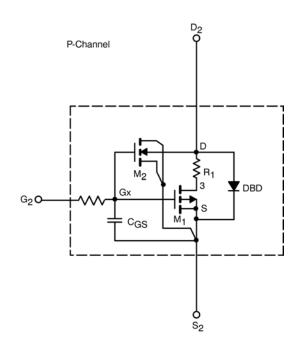
# SPICE Device Model Si5509DC Vishay Siliconix

### N- and P-Channel 20-V (D-S) MOSFET

#### **CHARACTERISTICS**

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


#### **DESCRIPTION**

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 4.5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{\rm gd}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

#### SUBCIRCUIT MODEL SCHEMATIC





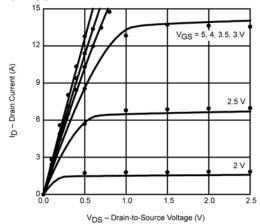
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

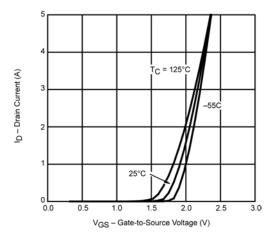
# **SPICE Device Model Si5509DC**

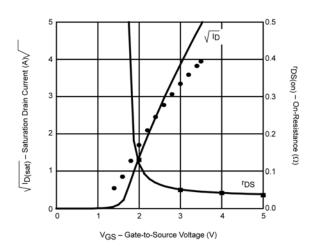
# Vishay Siliconix

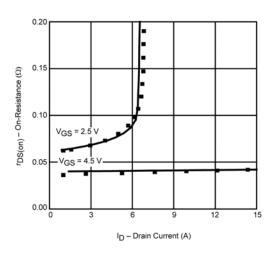


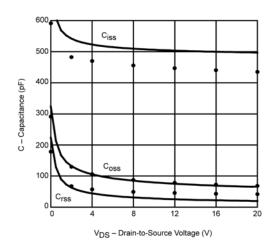
| Parameter                                     | Symbol              | Test Condition                                                                                                                                                                  |      | Simulated<br>Data | Measured<br>Data | Unit |
|-----------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|------------------|------|
| Static                                        |                     |                                                                                                                                                                                 |      |                   |                  |      |
| Gate Threshold Voltage                        | V <sub>GS(th)</sub> | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                                                                                                                            | N-Ch | 1.2               |                  | V    |
|                                               |                     | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$                                                                                                                                           | P-Ch | 1.1               |                  |      |
| On-State Drain Current <sup>a</sup>           | I <sub>D(on)</sub>  | $V_{DS} \le 5 \text{ V}, V_{GS}$ = 4.5 V                                                                                                                                        | N-Ch | 46                |                  | А    |
|                                               |                     | $V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$                                                                                                                              | P-Ch | 40                |                  |      |
| Drain-Source On-State Resistance <sup>a</sup> | r <sub>DS(on)</sub> | V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 5 A                                                                                                                                   | N-Ch | 0.041             | 0.043            | Ω    |
|                                               |                     | $V_{GS} = -4.5 \text{ V}, I_D = -3.9 \text{ A}$                                                                                                                                 | P-Ch | 0.066             | 0.074            |      |
|                                               |                     | $V_{GS}$ = 2.5 V, $I_{D}$ = 3.9 A                                                                                                                                               | N-Ch | 0.072             | 0.068            |      |
|                                               |                     | $V_{GS} = -2.5 \text{ V}, I_D = -2.9 \text{ A}$                                                                                                                                 | P-Ch | 0.111             | 0.128            |      |
| Forward Transconductance <sup>a</sup>         | g <sub>fs</sub> —   | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 5 A                                                                                                                                    | N-Ch | 12                | 10.4             | S    |
|                                               |                     | $V_{DS} = -10 \text{ V}, I_{D} = -3.9 \text{ A}$                                                                                                                                | P-Ch | 12                | 8.2              |      |
| Diode Forward Voltage <sup>a</sup>            | V <sub>SD</sub>     | I <sub>S</sub> = 2.4 A, V <sub>GS</sub> = 0 V                                                                                                                                   | N-Ch | 0.73              | 0.80             | V    |
|                                               |                     | I <sub>S</sub> = -1.5 A, V <sub>GS</sub> = 0 V                                                                                                                                  | P-Ch | 0.80              | - 0.80           |      |
| Dynamic <sup>b</sup>                          |                     |                                                                                                                                                                                 |      | •                 |                  |      |
| Input Capacitance                             | C <sub>iss</sub>    |                                                                                                                                                                                 | N-Ch | 506               | 455              |      |
|                                               |                     | N-Channel $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ $\text{P-Channel}$ $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ | P-Ch | 377               | 300              | pF   |
| Output Capacitance                            | $C_{oss}$           |                                                                                                                                                                                 | N-Ch | 80                | 85               |      |
|                                               |                     |                                                                                                                                                                                 | P-Ch | 92                | 95               |      |
| Reverse Transfer Capacitance                  | C <sub>rss</sub>    |                                                                                                                                                                                 | N-Ch | 28                | 50               |      |
|                                               |                     |                                                                                                                                                                                 | P-Ch | 61                | 65               |      |
| Total Gate Charge                             | Qg                  | $V_{DS}$ = 10V, $V_{GS}$ = 5V, $I_{D}$ = 4 A                                                                                                                                    | N-Ch | 4.2               | 4.4              | nC   |
|                                               |                     | $V_{DS} = -10V$ , $V_{GS} = -5V$ , $I_{D} = -3.9$ A                                                                                                                             | P-Ch | 3.6               | 4.1              |      |
|                                               |                     | N-Channel                                                                                                                                                                       | N-Ch | 3.8               | 3.8              |      |
|                                               |                     |                                                                                                                                                                                 | P-Ch | 3.3               | 3.9              |      |
| Gate-Source Charge                            | $Q_{gs}$            | $V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{V}, I_D = 4 \text{ A}$                                                                                                               | N-Ch | 0.9               | 0.9              |      |
|                                               |                     | P-Channel                                                                                                                                                                       | P-Ch | 0.7               | 0.7              |      |
| Gate-Source Charge                            | $Q_{gs}$            | $V_{DS} = -10V$ , $V_{GS} = -4.5V$ , $I_{D} = -3.9$ A                                                                                                                           | N-Ch | 0.95              | 0.95             |      |
|                                               |                     |                                                                                                                                                                                 | P-Ch | 1.25              | 1.25             |      |

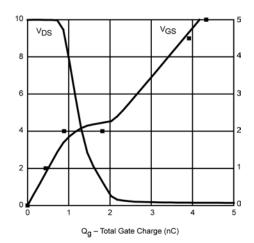

a. Pulse test; pulse width  $\leq 300~\mu s,$  duty cycle  $\leq 2\%.$  b. Guaranteed by design, not subject to production testing.





# SPICE Device Model Si5509DC Vishay Siliconix


#### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)


#### **N-Channel MOSFET**



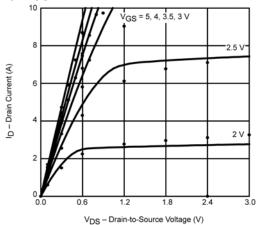


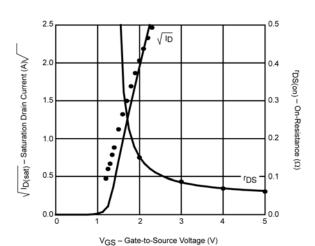


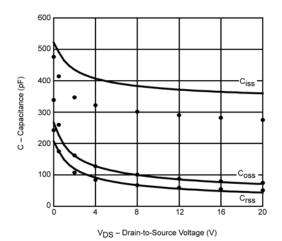


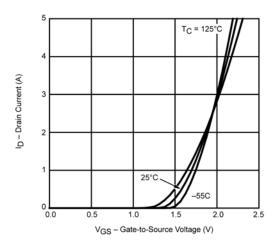


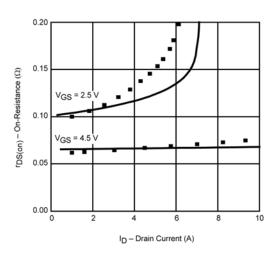


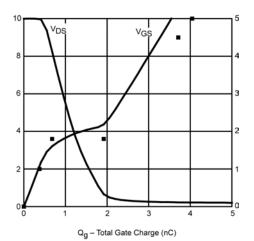


Note: Dots and squares represent measured data.


# **SPICE Device Model Si5509DC**


# **Vishay Siliconix**


# VISHAY.


#### **P-Channel MOSFET**














Note: Dots and squares represent measured data.