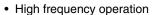

### Vishay High Power Products


### Schottky Rectifier, 3.0 A



| PRODUCT SUMMARY    |                 |  |  |  |
|--------------------|-----------------|--|--|--|
| I <sub>F(AV)</sub> | 3.0 A           |  |  |  |
| V <sub>R</sub>     | 20 V            |  |  |  |
| I <sub>RM</sub>    | 20 mA at 100 °C |  |  |  |

#### **FEATURES**







- · Very low forward voltage drop
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Lead (Pb)-free plating
- Designed and qualified for industrial level

#### **DESCRIPTION**

The 1N5820 axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

| MAJOR RATINGS AND CHARACTERISTICS            |                            |             |       |  |
|----------------------------------------------|----------------------------|-------------|-------|--|
| SYMBOL                                       | CHARACTERISTICS            | VALUES      | UNITS |  |
| I <sub>F(AV)</sub>                           | Rectangular waveform       | 3.0         | А     |  |
| V <sub>RRM</sub>                             |                            | 20          | V     |  |
| I <sub>FSM</sub>                             | t <sub>p</sub> = 5 μs sine | 450         | Α     |  |
| V <sub>F</sub> 3 Apk, T <sub>J</sub> = 25 °C |                            | 0.475       | V     |  |
| TJ                                           | Range                      | - 65 to 150 | °C    |  |

| VOLTAGE RATINGS                      |                |        |       |  |
|--------------------------------------|----------------|--------|-------|--|
| PARAMETER                            | SYMBOL         | 1N5820 | UNITS |  |
| Maximum DC reverse voltage           | V <sub>R</sub> | 20     | V     |  |
| Maximum working peak reverse voltage | $V_{RWM}$      | 20     | V     |  |

| ABSOLUTE MAXIMUM RATINGS                                                      |                               |                                                                                    |                          |        |       |
|-------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------|--------------------------|--------|-------|
| PARAMETER                                                                     | SYMBOL                        | TEST CONDITIONS                                                                    |                          | VALUES | UNITS |
| Maximum average forward current                                               | I <sub>F(AV)</sub>            | 50 % duty cycle at T <sub>L</sub> = 114 °C, rectangular waveform With cooling fins |                          | 3.0    |       |
| Maximum peak one cycle non-repetitive surge current at T <sub>J</sub> = 25 °C | 5 μs sine or 3 μs rect. pulse | Following any rated load condition and with rated                                  | 450                      | Α      |       |
|                                                                               | 'FSM                          | 10 ms sine or 6 ms rect. pulse                                                     | V <sub>RRM</sub> applied | 90     |       |

# Vishay High Power Products Schottky Rectifier, 3.0 A



| ELECTRICAL SPECIFICATIONS                                      |                                |                                                                |                          |      |        |       |
|----------------------------------------------------------------|--------------------------------|----------------------------------------------------------------|--------------------------|------|--------|-------|
| PARAMETER                                                      | SYMBOL                         | TEST CONDITIONS                                                |                          | TYP. | MAX.   | UNITS |
| Marian and and and and and                                     | V <sub>FM</sub> <sup>(1)</sup> | 3 A                                                            | - T <sub>J</sub> = 25 °C | 0.41 | 0.475  | V     |
| Maximum forward voltage drop                                   | V FM (1)                       | 9.4 A                                                          |                          | 0.49 | 0.85   |       |
| Maximum reverse leakage current I <sub>RM</sub> <sup>(1)</sup> | T <sub>J</sub> = 25 °C         | - V <sub>R</sub> = Rated V <sub>R</sub>                        | 0.05                     | 2.0  | mA     |       |
|                                                                | T <sub>J</sub> = 100 °C        |                                                                | 8.1                      | 20   | IIIA   |       |
| Typical junction capacitance                                   | C <sub>T</sub>                 | $V_R$ = 5 $V_{DC}$ (test signal range 100 kHz to 1 MHz), 25 °C |                          | 350  | -      | pF    |
| Typical series inductance                                      | L <sub>S</sub>                 | Measured lead to lead 5 mm from package body                   |                          | 9.0  | -      | nΗ    |
| Maximum voltage rate of change                                 | dV/dt                          | Rated V <sub>R</sub>                                           |                          | -    | 10 000 | V/µs  |

#### Note

 $<sup>^{(1)}\,</sup>$  Pulse width < 300  $\mu s,$  duty cycle < 2 %

| THERMAL - MECHANICAL SPECIFICATIONS             |                                                  |                                          |             |       |
|-------------------------------------------------|--------------------------------------------------|------------------------------------------|-------------|-------|
| PARAMETER                                       | SYMBOL                                           | TEST CONDITIONS                          | VALUES      | UNITS |
| Maximum junction and storage temperature range  | T <sub>J</sub> <sup>(1)</sup> , T <sub>Stg</sub> |                                          | - 65 to 150 | °C    |
| Maximum thermal resistance, junction to lead    | R <sub>thJL</sub>                                | With fin 20 x 20 (0.79 x 0.79) 1.0 thick | 34          | °C/W  |
| Maximum thermal resistance, junction to ambient | R <sub>thJA</sub>                                | DC operation Without cooling fin         | 80          | C/VV  |
| Approximate weight                              |                                                  |                                          | 1.2         | g     |
| Approximate weight                              |                                                  |                                          | 0.042       | OZ.   |
| Marking device                                  |                                                  | Case style C-16                          | 1N5         | 820   |

#### Note

$$^{(1)} \quad \frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}} \quad \text{thermal runaway condition for a diode on its own heatsink}$$



# Schottky Rectifier, 3.0 A Vishay High Power Products

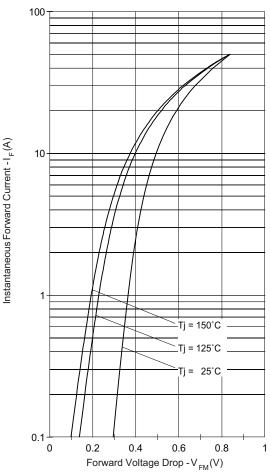



Fig. 1 - Maximum Forward Voltage Drop Characteristics

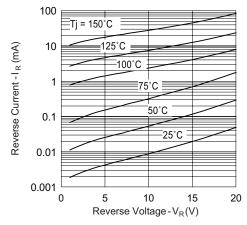



Fig. 2 - Typical Peak Reverse Current vs. Reverse Voltage

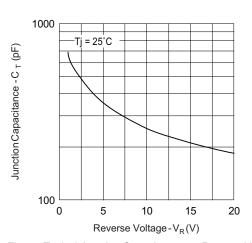



Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

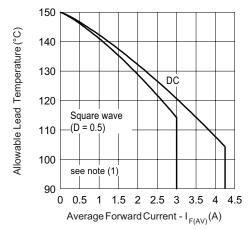



Fig. 4 - Typical Average Forward Current vs. Allowable Lead Temperature



Fig. 5 - Maximum Average Forward Dissipation vs. Average Forward Current

#### Note

(1) Formula used:  $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$ ;  $Pd = Forward power loss = I_{F(AV)} \times V_{FM}$  at  $(I_{F(AV)}/D)$  (see fig. 6);  $Pd_{REV} = Inverse power loss = V_{R1} \times I_R$  (1 - D)

## Vishay High Power Products Schottky Rectifier, 3.0 A



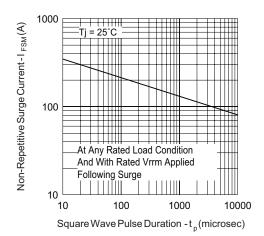
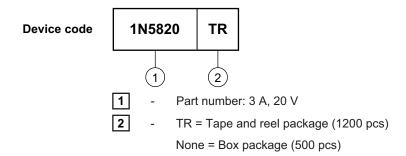




Fig. 6 - Maximum Peak Surge Forward Current vs. Pulse Duration

#### **ORDERING INFORMATION TABLE**



| LINKS TO RELATED DOCUMENTS                 |                                 |  |  |
|--------------------------------------------|---------------------------------|--|--|
| Dimensions http://www.vishay.com/doc?95242 |                                 |  |  |
| Part marking information                   | http://www.vishay.com/doc?95304 |  |  |
| Packaging information                      | http://www.vishay.com/doc?95309 |  |  |



Vishay

### **Disclaimer**

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com