
I/O MCU with USB Interface

HT82B42R/HT82B42RE

Revision: V.1.00 Date: October 27, 2011

Rev. 1.00 2 October 27, 2011 Rev. 1.00 3 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Table of Contents

Features .. 5
General Description ... 5
Selection Table ... 6
Block Diagram .. 6

HT82B42R .. 6
HT82B42RE .. 7

Pin Assignment .. 8
Pin Description .. 9
Absolute Maximum Ratings ...11
D.C. Characteristics ..11
EEPROM Memory D.C. Characteristics ... 12
A.C. Characteristics ... 12
System Architecture .. 13

Clocking and Pipelining ... 13
Program Counter ... 13
Stack ... 15
Arithmetic and Logic Unit – ALU ... 15

Program Memory ... 16
Structure .. 16
Special Vectors ... 17
Look-up Table .. 18
Table Program Example .. 19

Data Memory .. 20
Structure .. 20

General Purpose Data Memory .. 20
Special Function Registers ... 21

Indirect Addressing Register – IAR0, IAR1 ... 21
Memory Pointer – MP0, MP1 .. 22
Accumulator – ACC ... 22
Program Counter Low Register – PCL .. 22
Look-up Table Registers – TBLP, TBLH, TBHP .. 23
Status Register – STATUS .. 23
Bank Pointer – BP ... 24

Input/Output Ports ... 25
Pull-high Resistors .. 25
Port A CMOS/NMOS/PMOS Structure .. 25
Port A VDD/V33O Option Structure ... 25
Port Pin Wake-up .. 25
I/O Port Control Registers ... 26

Rev. 1.00 2 October 27, 2011 Rev. 1.00 3 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Pin-shared Functions .. 26
Programming Considerations .. 28

Timer/Event Counters ... 28
Configuring the Timer/Event Counter Input Clock Source .. 29
Timer Register – TMR0, TMR1L/TMR1H .. 29
Timer Control Register – TMR0C/TMR1C .. 30
Configuring the Timer Mode .. 32
Configuring the Event Counter Mode .. 32
Configuring the Pulse Width Measurement Mode ... 33
I/O Interfacing .. 34
Programming Considerations .. 34
Timer Program Example ... 35

Interrupts .. 36
Interrupt Registers ... 36
Interrupt Operation .. 37
Interrupt Priority ... 38
Timer/Event Counter Interrupt ... 38
Programming Considerations .. 38
USB Interrupt .. 39
Serial Interface Interrupt .. 39

Reset and Initialisation .. 39
Reset Functions .. 40
Reset Initial Conditions ... 42

Oscillator .. 44
Watchdog Timer Oscillator .. 44

Power Down Mode and Wake-up .. 44
Power Down Mode .. 44
Entering the Power Down Mode ... 44
Standby Current Considerations ... 45
Wake-up .. 45

Watchdog Timer ... 46
USB Interface ... 47

Suspend Wake-Up and Remote Wake-Up .. 47
To Configure as PS2 Device ... 48
USB Control Registers .. 48
STALL and PIPE, PIPE_CTRL, Endpt_EN Registers ... 51

Serial Interface – SPI .. 57
SPI Interface Operation ... 57
SPI Registers .. 58
SPI Communication .. 61
SPI Bus Enable/Disable .. 63
SPI Operation .. 64
Error Detection .. 65

Rev. 1.00 4 October 27, 2011 Rev. 1.00 5 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Configuration Options ... 66
Application Circuit ... 66
Instruction Set .. 67

Introduction ... 67
Instruction Timing .. 67
Moving and Transferring Data ... 67
Arithmetic Operations .. 67
Logical and Rotate Operations .. 68
Branches and Control Transfer ... 68
Bit Operations ... 68
Table Read Operations ... 68
Other Operations ... 68
Instruction Set Summary ... 69

Instruction Definition ... 71
Package Information ... 81

16-pin NSOP (150mil) Outline Dimensions ... 81
20-pin SSOP (150mil) Outline Dimensions ... 82
SAW Type 20-pin (4mm×4mm) QFN Outline Dimensions .. 83
Reel Dimensions ... 84
Carrier Tape Dimensions ... 85

Rev. 1.00 4 October 27, 2011 Rev. 1.00 5 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Features
•	 Operating	voltage:

fSYS=6M/12MHz:	3.3V~5.5V

•	 Fully	integrated	6MHz	or	12MHz	oscillator

•	 4096×15	program	memory

•	 160×8	data	memory	RAM

•	 EEPROM	Memory:	128×8	(For	HT82B42RE	only)

•	 USB	2.0	low	speed	function

•	 PS2	and	USB	modes	supported

•	 3	endpoints	supported	–	endpoint	0	included

•	 Integrated	1.5kΩ		resistor	between	V33O	and	UDN	pins	for	USB	applications

•	 Internal	Regulator	with	3.3V	output

•	 8-level	subroutine	nesting	

•	 15	bidirectional	I/O	lines	(max.)

•	 8-bit	programmable	timer/event	counter	with	overflow	interrupt

•	 16-bit	programmable	timer/event	counter	with	overflow	interrupt

•	 Watchdog	Timer

•	 Serial	SPI	Interface

•	 All	I/O	pins	have	wake-up	functions

•	 Power-down	function	and	wake-up	feature	reduce	power	consumption

•	 Up	to	0.33μs	instruction	cycle	with	12MHz	system	clock	at	VDD=5V

•	 Bit	manipulation	instruction

•	 15-bit	table	read	instruction

•	 63	powerful	instructions

•	 All	instructions	in	one	or	two	machine	cycles

•	 Low	voltage	reset	function

•	 16-pin	NSOP,	20-pin	SSOP	and	20-pin	QFN	packages

General Description
The	HT82B42R	is	8-bit	high	performance,	RISC	architecture	microcontroller	devices	specifically	
designed	for	multiple	I/O	control	product	applications.	In	addition,	the	HT82B42RE	is	embedded	
with	an	EEPROM	device.

The	advantages	of	 low	power	consumption,	 I/O	 flexibility,	 timer	 functions,	 integrated	USB	
interface,	serial	SPI	interface,	Power	Down	and	wake-up	functions,	Watchdog	timer	etc.,	make	the	
devices	extremely	suitable	for	use	in	computer	peripheral	product	applications	as	well	as	many	other	
applications	such	as	industrial	control,	consumer	products,	subsystem	controllers,	etc..

EEPROM	memory	 is	 incorporated	 into	 the	HT82B42RE,	which	 is	useful	 for	applications	 that	
require	an	area	of	non-volatile	memory,	perhaps	to	store	information	such	as	calibration	parameters,	
part	numbers	etc..	Most	 features	are	common	 to	 the	HT82B42R,	however,	 they	differ	 in	 the	
provision	of	an	EEPROM.

Rev. 1.00 6 October 27, 2011 Rev. 1.00 7 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Selection Table
Most	features	are	common	to	all	devices,	 the	main	feature	distinguishing	them	is	EEPROM.	The	
following	table	summarizes	the	main	features	of	each	device.

Part No. VDD Program
Memory

Data
Memory

Data
EEPROM I/O

Timer End-
Points

HIRC
(MHz)

LDO
70mA

I/O VDD
Option SPI Stack Package

8-bit 16-bit

HT82B42R 3.3V~
5.5V 4k×15 160×8 ― 15 1 1 3 6/12 √ √ √ 8

16NSOP
20SSOP
20QFN

HT82B42RE 3.3V~
5.5V 4k×15 160×8 128x8 13 1 1 3 6/12 √ √ √ 8 20QFN

Block Diagram

HT82B42R

� � � �
� � � � � �

� � �
� � � � � � � �

� � � � � � �
�
 � � �

� � � � � � �
� � � � � �

	 � �
 �
� � � �
� � �
� � � �

� � � � � � �
�
 � � � � � � �
 � � � � � �

� � � � �
�
 � � �
 �

� � � � � � � � �
� � � � � � � � � �

� � � � � � � �
� � � � � �
 � � � � � �

� � �
� � � � � � �
� � � � �

� � �

� �

� � � �

� � � �
 �
�
 � � �

	 � �
 �
�
 � � �

Rev. 1.00 6 October 27, 2011 Rev. 1.00 7 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

The	following	block	diagrams	illustrate	the	dual-chip	structure	of	the	devices,	where	an	individual	
MCU	with	EEPROM	devices	are	combined	into	a	single	package.	

HT2201

VDDP

VSSP

HT82B42R

SDA

SCL

USB pins

RES

TMR pins

SPI

I/O ports
VDD

VSS

VDD

VSS

PE0

PE1

HT82B42RE

×

Rev. 1.00 8 October 27, 2011 Rev. 1.00 9 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Pin Assignment

VDD
V33O

UDN/DATA
UDP/CLK

PE0

PA7/TMR1
PA6/TMR0
PA5
PA4/SCS
PA3/SCK

16
15
14
13

12
11

1
2
3
4
5
6
7
8 9

10
PE1

VSS
PE2/RES

PA0
PA1/SDI
PA2/SDO

HT82B42R
16 NSOP-A

PB2
PB3VDD

V33O
UDN/DATA

UDP/CLK
VSS

PB1
PB0

PA7/TMR1
PA6/TMR0 PA5

PA4/SCS

PA3/SCK

20
19
18
17
16
15
14
13

12
11

1
2
3
4
5
6
7
8

9
10

PE2/RES
PE0
PE1 PA0

PA1/SDI
PA2/SDO

6 7 8 9 10

1617181920
1
2
3
4
5

15
14
13
12
11

PB3

PE2/RES

V
D

D

V33O
UDN/DATA

UDP/CLK
VSS

P
A

5

P
E

1
P

A
0

P
A

1/S
D

I
P

A
6/TM

R
0

P
A

2/S
D

O

P
E

0

PA3/SCK

P
A

4/S
C

S

P
A

7/TM
R

1

PB0
PB1
PB2

HT82B42R
20 SSOP-A

HT82B42R
20 QFN-A

6 7 8 9 10

1617181920
1
2
3
4
5

15
14
13
12
11

PB3

PE2/RES

V
D

D

V33O
UDN/DATA

UDP/CLK
VSS

P
A

5

P
E

1/S
C

L
P

A
0

P
A

1/S
D

I
P

A
6/TM

R
0

P
A

2/S
D

O

P
E

0/S
D

A

PA3/SCK

P
A

4/S
C

S

P
A

7/TM
R

1

PB0
PB1
PB2

HT82B42RE
20 QFN-A

Rev. 1.00 8 October 27, 2011 Rev. 1.00 9 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Pin Description
The	pins	on	this	device	can	be	referenced	by	their	Port	name,	e.g.	PA.0,	PA.1	etc.,	which	refer	to	the	
digital	I/O	function	of	the	pins.	However	these	Port	pins	are	also	shared	with	other	function	such	as	
the	Timers,	Serial	Port	pins	etc..	The	function	of	each	pin	is	listed	in	the	following	table,	however	
the	details	behind	how	each	pin	is	configured	is	contained	in	other	sections	of	the	datasheet.	

HT82B42R

Pin Name Function OPT I/T O/T Description

PA0 PA0 CO ST
NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

PA1/SDI
PA1 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SDI ― ST ― SPI Data input

PA2/SDO
PA2 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SDO ― ― CMOS SPI Data output

PA3/SCK
PA3 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SCK ― ST CMOS SPI Serial Clock

PA4/SCS
PA4 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SCS ― ST ― SPI Slave select

PA5 PA5 CO ST
NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
output structure and VDD or 3.3V voltage output. The output
structure can be selected as CMOS, NMOS or PMOS.

PA6/TMR0
PA6 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
output structure and VDD or 3.3V voltage output. The output
structure can be selected as CMOS, NMOS or PMOS.

TMR0 ― ST ― Timer 0 External input

PA7/TMR1
PA7 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
output structure and VDD or 3.3V voltage output. The output
structure can be selected as CMOS, NMOS or PMOS.

TMR1 ― ST ― Timer 1 External input
PB0~PB3 PB0~PB3 CO ST CMOS General purpose I/O. Configuration option enabled pull-up and wake-up.
PE0~PE1 PE0~PE1 CO ST CMOS General purpose I/O. Configuration option enabled pull-up and wake-up.

PE2/RES
PE2 CO ST NMOS General purpose I/O. Configuration option wake-up.
RES CO ST ― Reset input

UDN/DATA
UDN ― ST CMOS USB D- line
DATA ― ST NMOS PS2 Data line

UDP/CLK
UDP ― ST CMOS USB D+ line
CLK ― ST NMOS PS2 CLK line

VDD VDD ― PWR ― Power supply
VSS VSS ― PWR ― Ground
V33O V33O ― ― PWR 3.3V regulator output

Rev. 1.00 10 October 27, 2011 Rev. 1.00 11 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

HT82B42RE
Pin Name Function OPT I/T O/T Description

PA0 PA0 CO ST
NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

PA1/SDI
PA1 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SDI ― ST ― SPI Data input

PA2/SDO
PA2 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SDO ― ― CMOS SPI Data output

PA3/SCK
PA3 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SCK ― ST CMOS SPI Serial Clock

PA4/SCS
PA4 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SCS ― ST ― SPI Slave select

PA5 PA5 CO ST
NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

PA6/TMR0
PA6 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

TMR0 ― ST ― Timer 0 External input

PA7/TMR1
PA7 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

TMR1 ― ST ― Timer 1 External input
PB0~PB3 PB0~PB3 CO ST CMOS General purpose I/O. Configuration option enabled pull-up and wake-up.

PE0/SDA
PE0 CO ST CMOS General purpose I/O. Configuration option enabled pull-up and wake-up.
SDA ― ― ― Internal serial data input/output signal

PE1/SCL
PE1 CO ST CMOS General purpose I/O. Configuration option enabled pull-up and wake-up.
SCL ― ― ― Serial clock input signal

PE2/RES
PE2 CO ST NMOS General purpose I/O. Configuration option wake-up.
RES CO ST ― Reset input

UDN/DATA
UDN ― ST CMOS USB D- line
DATA ― ST NMOS PS2 Data line

UDP/CLK
UDP ― ST CMOS USB D+ line
CLK ― ST NMOS PS2 CLK line

VDD VDD ― PWR ― Power supply
VSS VSS ― PWR ― Ground
V33O V33O ― ― PWR 3.3V regulator output

Note:	I/T:	Input	type;		 	 O/T:	Output	type
OPT:	Optional	by	configuration	option	(CO)	or	register	option
PWR:	Power;		 	 CO:	Configuration	option
ST:	Schmitt	Trigger	input;		 CMOS:	CMOS	output;

Where	devices	exist	in	more	than	one	package	type	the	table	reflects	the	situation	for	the	package	with	the	
largest	number	of	pins.	For	this	reason	not	all	pins	described	in	the	table	may	exist	on	all	package	types.	

Rev. 1.00 10 October 27, 2011 Rev. 1.00 11 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Absolute Maximum Ratings
Supply	Voltage	..VSS−0.3V	to	VSS+6.0V	
Input	Voltage	..VSS−0.3V	to	VDD+0.3V	
Storage	Temperature	... -50°C	to	125°C	
Operating	Temperature	... -40°C	to	85°C	
IOH	Total	..-100mA	
IOL	Total	... 150mA	
Total	Power	Dissipation		.. 500mW	

Note:	These	are	stress	ratings	only.	Stresses	exceeding	 the	range	specified	under	"Absolute	Maximum	
Ratings"	may	cause	substantial	damage	to	the	device.	Functional	operation	of	this	device	at	other	
conditions	beyond	those	listed	in	the	specification	is	not	implied	and	prolonged	exposure	to	extreme	
conditions	may	affect	device	reliability.

D.C. Characteristics
Ta=25°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD
Operating Voltage
(Integrated oscillator) — fSYS=6MHz or 12MHz 3.3 — 5.5 V

IDD Operating Current 5V
No load, fSYS=6MHz — 6.5 12 mA
No load, fSYS=12MHz — 7.5 16 mA

ISTB

Standby Current

5V

No load,
system USB suspend,
set CLK_adj [22H] "*"

— — 400 μA

Standby Current (WDT Enabled)
No load, system HALT,
input/output mode,
set SUSP2 & CLK_adj [22H]

— — 15 μA

VIL

Input Low Voltage for PA
5V where VDDIO=VDD or V33O

by option for port A

0 — 0.2VDDIO V
Input Low Voltage for PB, PE 0 — 0.2VDD V
Input Low Voltage for RES pin 0 — 0.4VDD V

VIH

Input High Voltage for PA
5V where VDDIO=VDD or V33O

by option for Port A

0.8VDDIO — 5 V
Input High Voltage for PB, PE 0.8VDD — 5 V
Input High Voltage for RES pin 0.9VDD — VDD V

VLVR Low Voltage Reset 5V — 2.0 2.6 3.2 V
VV33O 3.3V Regulator Output for USB SIE 5V IV33O=70mA 3.0 3.3 3.6 V

IOH
Output Source Current for I/O Pin PA,
PB, PE0~1 5V VOH=3.4V -2 -4 — mA

IOL1
Output Sink Current for I/O Pin PA, PB,
PE0~1 5V VOL=0.4V 2 4 — mA

IOL2 Output Sink Current for PE2 5V VOL=0.1VDD 2 3 — mA

RPH
Pull-high Resistance for CLK, DATA

5V —
— 4.7 — kΩ

Pull-high Resistance for PA, PB, PE0~1 20 50 70 kΩ

Note:	"*"	include	15kΩ	loading	on	the	UDP,	UDN	lines	at	the	host	terminal.

Rev. 1.00 12 October 27, 2011 Rev. 1.00 13 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

EEPROM Memory D.C. Characteristics
Ta=40°C~85°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDDP Condition

VCC Operating Voltage — — 2.2 — 5.5 V

ICC1* Operating Current 5V Read at 100kHz — — 2 mA

ICC2* Operating Current 5V Write at 100kHz — — 5 mA

ISTB1* Standby Current 5V VIN=0 or VDDP — — 4 μA

ISTB2* Standby Current 2.4V VIN=0 or VDDP — — 3 μA

VIL Input Low Voltage — — -1 — 0.3VDDP V

VIH Input High Voltage — — 0.7VDDP — VDDP+0.5 V

VOL Output Low Voltage 2.4V IOL=2.1mA — — 0.4 V

ILI Input Leakage Current 5V VIN=0 or VDDP — — 1 μA

ILO Output Leakage Current 5V VOUT=0 or VDDP — — 1 μA

Note:	*:	The	operating	current	ICC1	and	ICC2	listed	here	are	the	additional	currents	consumed	when	the	EEPROM	
Memory	operates	in	Read	Operation	and	Write	Operation	respectively.	If	the	EEPROM	is	operating,	the	ICC1	
or	ICC2	should	be	added	to	calculated	the	relevant	operating	current	of	the	device	for	defferent	conditions.	
To	calculate	the	standby	current	for	the	whole	device,	the	standby	current	shown	above	should	also	be	taken	
into	account.

A.C. Characteristics
Ta=25°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fRCSYS RC Clock with 8-bit Prescaler Register 5V — — 32 — kHz

tWDT Watchdog Time-out Period (System Clock) — — 1024 — — 1/fRCSYS

tUSB UDP, UDN Rising & Falling Time — — 75 — 300 ns

tOST Oscillation Start-up Timer Period — — — 1024 — tSYS

tOSCsetup Crystal Setup — — — 5 — ms

fINO125V Internal Oscillator Frequency for 12MHz 4.0V~5.5V — 10.80 12.00 13.20 MHz

fINO123V Internal Oscillator Frequency for 12MHz 3.0V~4.0V — 10.56 12.00 13.44 MHz

fINOUSB Internal Oscillator Frequency with USB Mode 4.2V~5.5V — 11.82 12.00 12.18 MHz

Note:	tSYS=1/fSYS	
Power_on	period=tWDT+tOST+tOSCsetup
WDT	Time_out	in	Normal	Mode=1/fRCSYS×256×WDTS+tWDT

WDT	Time_out	in	Power	Down	Mode=1/fRCSYS×256×WDTS+tOST+tOSCsetup
Trimmed	for	5V	operation	using	factory	trim	values.	Frequency	Trim	to	12MHz±3%

Rev. 1.00 12 October 27, 2011 Rev. 1.00 13 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

System Architecture
A	key	factor	in	the	high-performance	features	of	the	Holtek	range	of	microcontrollers	is	attributed	
to	the	internal	system	architecture.	The	range	of	devices	take	advantage	of	the	usual	features	found	
within	RISC	microcontrollers	providing	increased	speed	of	operation	and	enhanced	performance.	
The	pipelining	scheme	 is	 implemented	 in	such	a	way	 that	 instruction	 fetching	and	 instruction	
execution	are	overlapped,	hence	 instructions	are	effectively	executed	 in	one	cycle,	with	 the	
exception	of	branch	or	call	 instructions.	An	8-bit	wide	ALU	is	used	in	practically	all	operations	
of	 the	 instruction	set.	 It	carries	out	arithmetic	operations,	 logic	operations,	 rotation,	 increment,	
decrement,	branch	decisions,	etc..	The	internal	data	path	is	simplified	by	moving	data	through	the	
Accumulator	and	the	ALU.	Certain	 internal	 registers	are	 implemented	 in	 the	Data	Memory	and	
can	be	directly	or	 indirectly	addressed.	The	simple	addressing	methods	of	 these	registers	along	
with	additional	architectural	features	ensure	that	a	minimum	of	external	components	is	required	to	
provide	a	functional	I/O	and	A/D	control	system	with	maximum	reliability	and	flexibility.	

Clocking and Pipelining
The	system	clock	 is	derived	 from	an	 internal	oscillator	and	 is	 subdivided	 into	 four	 internally	
generated	non-overlapping	clocks,	T1~T4.	The	Program	Counter	 is	 incremented	at	 the	beginning	
of	the	T1	clock	during	which	time	a	new	instruction	is	fetched.	The	remaining	T2~T4	clocks	carry	
out	the	decoding	and	execution	functions.	In	this	way,	one	T1~T4	clock	cycle	forms	one	instruction	
cycle.	Although	the	fetching	and	execution	of	 instructions	takes	place	in	consecutive	instruction	
cycles,	 the	pipelining	structure	of	 the	microcontroller	ensures	 that	 instructions	are	effectively	
executed	in	one	instruction	cycle.	The	exception	to	this	are	instructions	where	the	contents	of	the	
Program	Counter	are	changed,	such	as	subroutine	calls	or	jumps,	in	which	case	the	instruction	will	
take	one	more	instruction	cycle	to	execute.

For	 instructions	 involving	branches,	such	as	 jump	or	call	 instructions,	 two	machine	cycles	are	
required	 to	complete	 instruction	execution.	An	extra	cycle	 is	 required	as	 the	program	takes	one	
cycle	to	first	obtain	the	actual	jump	or	call	address	and	then	another	cycle	to	actually	execute	the	
branch.	The	requirement	for	this	extra	cycle	should	be	taken	into	account	by	programmers	in	timing	
sensitive	applications.

Program Counter
During	program	execution,	 the	Program	Counter	is	used	to	keep	track	of	 the	address	of	 the	next	
instruction	 to	be	executed.	 It	 is	automatically	 incremented	by	one	each	 time	an	 instruction	 is	
executed	except	for	instructions,	such	as	"JMP"	or	"CALL"	that	demand	a	jump	to	a	non-consecutive	
Program	Memory	address.	 It	must	be	noted	 that	only	 the	 lower	8	bits,	known	as	 the	Program	
Counter	Low		Register,	are	directly	addressable	by	user.

Rev. 1.00 14 October 27, 2011 Rev. 1.00 15 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �
� � � � � � � � � � � � � � � � � � �

� � � � � � � � �

 � � 	 � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� 	 � � � 	 � 	 � �

System Clocking and Pipelining

� �
� � � � � � � � � � � � �

� � � � � � � � � � � � �

�
�
�
�

	 � � � � � �

� � � � � � � � � � �
� � � � � � � � � �
� � � � � � � � �
�
�
� � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � 	 � � � � � � � � � � � � � � 	
� � � � � � � � � � � �

Instruction Fetching

When	executing	 instructions	 requiring	 jumps	 to	non-consecutive	addresses	 such	as	 a	 jump	
instruction,	a	subroutine	call,	 interrupt	or	reset,	etc.,	 the	microcontroller	manages	program	control	
by	loading	the	required	address	into	the	Program	Counter.	For	conditional	skip	instructions,	once	
the	condition	has	been	met,	the	next	instruction,	which	has	already	been	fetched	during	the	present	
instruction	execution,	is	discarded	and	a	dummy	cycle	takes	its	place	while	the	correct	instruction	is	
obtained.

The	lower	byte	of	the	Program	Counter,	known	as	the	Program	Counter	Low		register	or	PCL,	is	
available	for	program	control	and	is	a	readable	and	writeable	register.	By	transferring	data	directly	
into	this	register,	a	short	program	jump	can	be	executed	directly,	however,	as	only	this	 low	byte	
is	available	for	manipulation,	 the	 jumps	are	 limited	 to	 the	present	page	of	memory,	 that	 is	256	
locations.	When	such	program	jumps	are	executed	it	should	also	be	noted	that	a	dummy	cycle	will	
be	inserted.

The	lower	byte	of	the	Program	Counter	is	fully	accessible	under	program	control.	Manipulating	the	
PCL	might	cause	program	branching,	so	an	extra	cycle	is	needed	to	pre-fetch.	Further	information	
on	the	PCL	register	can	be	found	in	the	Special	Function	Register	section.

Rev. 1.00 14 October 27, 2011 Rev. 1.00 15 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Stack
This	 is	a	special	part	of	 the	memory	which	is	used	to	save	the	contents	of	 the	Program	Counter	
only.	The	stack	has	8	levels	and	is	neither	part	of	 the	data	nor	part	of	 the	program	space,	and	is	
neither	 readable	nor	writeable.	The	activated	 level	 is	 indexed	by	 the	Stack	Pointer,	SP,	and	 is	
neither	readable	nor	writeable.	At	a	subroutine	call	or	interrupt	acknowledge	signal,	the	contents	of	
the	Program	Counter	are	pushed	onto	the	stack.	At	the	end	of	a	subroutine	or	an	interrupt	routine,	
signaled	by	a	return	instruction,	RET	or	RETI,	the	Program	Counter	is	restored	to	its	previous	value	
from	the	stack.	After	a	device	reset,	the	Stack	Pointer	will	point	to	the	top	of	the	stack.

If	the	stack	is	full	and	an	enabled	interrupt	takes	place,	the	interrupt	request	flag	will	be	recorded	but	
the	acknowledge	signal	will	be	inhibited.	When	the	Stack	Pointer	is	decremented,	by	RET	or	RETI,	
the	interrupt	will	be	serviced.	This	feature	prevents	stack	overflow	allowing	the	programmer	to	use	
the	structure	more	easily.	However,	when	the	stack	is	full,	a	CALL	subroutine	instruction	can	still	
be	executed	which	will	result	in	a	stack	overflow.	Precautions	should	be	taken	to	avoid	such	cases	
which	might	cause	unpredictable	program	branching.

� � � � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � �
	 � � � � �

� � � � � � � � � � � �

� � � � �
� � � � � � �

� � � � � � � � � � � � � � �

Arithmetic and Logic Unit – ALU
The	arithmetic-logic	unit	or	ALU	is	a	critical	area	of	the	microcontroller	that	carries	out	arithmetic	
and	logic	operations	of	the	instruction	set.	Connected	to	the	main	microcontroller	data	bus,	the	ALU	
receives	related	instruction	codes	and	performs	the	required	arithmetic	or	 logical	operations	after	
which	the	result	will	be	placed	in	the	specified	register.	As	these	ALU	calculation	or	operations	may	
result	in	carry,	borrow	or	other	status	changes,	the	status	register	will	be	correspondingly	updated	to	
reflect	these	changes.	The	ALU	supports	the	following	functions:

•	 Arithmetic	operations:	ADD,	ADDM,	ADC,	ADCM,	SUB,	SUBM,	SBC,	SBCM,	DAA

•	 Logic	operations:	AND,	OR,	XOR,	ANDM,	ORM,	XORM,	CPL,	CPLA

•	 Rotation:	RRA,	RR,	RRCA,	RRC,	RLA,	RL,	RLCA,	RLC

•	 Increment	and	Decrement:	INCA,	INC,	DECA,	DEC

•	 Branch	decision:	JMP,	SZ,	SZA,	SNZ,	SIZ,	SDZ,	SIZA,	SDZA,	CALL,	RET,	RETI

Rev. 1.00 16 October 27, 2011 Rev. 1.00 17 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Mode
Program Counter Bits

*11~*8 *7 *6 *5 *4 *3 *2 *1 *0
Initial reset 0 0 0 0 0 0 0 0 0
USB interrupt 0 0 0 0 0 0 1 0 0
Timer/Event 0 Counter overflow 0 0 0 0 0 1 0 0 0
Timer/Event 1 Counter overflow 0 0 0 0 0 1 1 0 0
SPI interrupt 0 0 0 0 1 0 0 0 0
Skip Program Counter+2
Loading PCL @11~@8 @7 @6 @5 @4 @3 @2 @1 @0
Jump, call branch #11~#8 #7 #6 #5 #4 #3 #2 #1 #0
Return (RET, RETI) S11~S8 S7 S6 S5 S4 S3 S2 S1 S0

Program Counter

Note:	PC11~PC8:	Current	Program	Counter	bits	 @7~@0:	PCL	bits		
#11~#0:	Instruction	code	address	bits	 	 S11~S0:	Stack	register	bits

Program Memory
The	 Program	Memory	 is	 the	 location	where	 the	 user	 code	 or	 program	 is	 stored.	 The	
HT82B42R/HT82B42RE	are	One-Time	Programmable,	OTP,	memory	type	devices	where	users	
can	program	their	application	code	into	the	devices.	By	using	the	appropriate	programming	tools,	
OTP	devices	offer	users	 the	flexibility	 to	freely	develop	their	applications	which	may	be	useful	
during	debug	or	for	products	requiring	frequent	upgrades	or	program	changes.	OTP	devices	are	also	
applicable	for	use	in	applications	that	require	low	or	medium	volume	production	runs.

Structure
The	Program	Memory	has	a	capacity	of	4K	by	15	bits.	The	Program	Memory	is	addressed	by	the	
Program	Counter	and	also	contains	data,	table	information	and	interrupt	entries.	Table	data,	which	
can	be	setup	in	any	location	within	the	Program	Memory,	 is	addressed	by	separate	 table	pointer	
registers.

� � � �
� � � � � � �

� � �
� � � � � � � � � � � � � � �

 � 	 � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � �

� � � �

� � � �

� � � � � � � � � � � � � �
 � � � � �

� � � �

 � 	 � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � �
� � � � � � � � � � � � � � �

Program Memory Structure

Rev. 1.00 16 October 27, 2011 Rev. 1.00 17 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Special Vectors
Within	 the	Program	Memory,	certain	 locations	are	reserved	for	special	usage	such	as	 reset	and	
interrupts.

•	 Location	000H
This	area	 is	 reserved	for	program	initialization.	After	chip	 reset,	 the	program	always	begins	
execution	at	location	000H.

•	 Location	004H
This	area	is	reserved	for	 the	USB	interrupt	service	program.	If	 the	USB	interrupt	 is	activated,	
the	interrupt	is	enabled	and	the	stack	is	not	full,	 the	program	jumps	to	this	location	and	begins	
execution.

•	 Location	008H
This	area	is	reserved	for	the	Timer/Event	Counter	0	interrupt	service	program.	If	a	timer	interrupt	
results	from	a	Timer/Event	Counter	0	overflow,	and	if	the	interrupt	is	enabled	and	the	stack	is	not	
full,	the	program	jumps	to	this	location	and	begins	execution.

•	 Location	00CH
This	area	is	reserved	for	the	Timer/Event	Counter	1	interrupt	service	program.	If	a	timer	interrupt	
results	from	a	Timer/Event	Counter	1	overflow,	and	the	interrupt	is	enabled	and	the	stack	is	not	
full,	the	program	jumps	to	this	location	and	begins	execution.

•	 Location	010H
This	area	is	reserved	for	the	SPI	interrupt	service	program.	If	a	SPI	interrupt	results	from	a	byte	
of	data	has	been	transmitted	or	received	by	the	SPI	interface,	and	the	interrupt	is	enabled	and	the	
stack	is	not	full,	the	program	jumps	to	this	location	and	begins	execution.

•	 Table	location
Any	location	in	the	program	memory	can	be	used	as	look-up	tables.	There	are	three	methods	to	
read	the	Program	Memory	data	using	two	table	read	instructions:	"TABRDC"	and	"TABRDL",	
transfer	the	contents	of	the	lower-order	byte	to	the	specified	data	memory,	and	the	higher-order	
byte	to	TBLH	(08H).
The	three	methods	are	shown	as	follows:
	♦ Using	the	instruction	"TABRDC	[m]"	for	the	current	Program	Memory	page,	where	one	page=	
256words,	where	the	table	location	is	defined	by	TBLP		in	the	current	page.	This	is	where	the	
configuration	option	has	disabled	the	TBHP	register.

	♦ Using	the	instruction	"TABRDC	[m]",	where	the	table	location	is	defined	by	registers	TBLP	
and	TBHP.	Here	the	configuration	option	has	enabled	the	TBHP	register.

	♦ Using	the	instruction	"TABRDL	[m]",	where	the	table	location	is	defined	by	registers	TBLP	in	
the	last	page	which	has	the	address	range	0F00H~0FFFH.

Only	the	destination	of	the	lower-order	byte	in	the	table	is	well-defined,	the	other	bits	of	the	table	
word	are	transferred	to	the	lower	portion	of	TBLH,	and	the	remaining	1-bit	words	are	read	as	"0".	
The	Table	Higher-order	byte	register	(TBLH)	is	read	only.	The	table	pointers,	TBLP	and	TBHP,	are	
read/write	registers,	which	indicate	the	table	location.	Before	accessing	the	the	table,	the	locations	
must	be	placed	in	the	TBLP	and	TBHP	registers	(if	the	configuration	option	has	disabled	TBHP	then	
the	value	in	TBHP	has	no	effect).	TBLH	is	read	only	and	cannot	be	restored.	If	 the	main	routine	
and	the	ISR	(Interrupt	Service	Routine)	both	employ	the	table	read	instruction,	the	contents	of	the	
TBLH	in	the	main	routine	are	likely	to	be	changed	by	the	table	read	instruction	used	in	the	ISR	and	
errors	can	occur.	Using	the	table	read	instruction	in	the	main	routine	and	the	ISR	simultaneously	
should	be	avoided.	However,	if	the	table	read	instruction	has	to	be	applied	in	both	the	main	routine	
and	the	ISR,	the	interrupt	should	be	disabled	prior	to	the	table	read	instruction.	It	will	not	be	enabled	
until	the	TBLH	has	been	backed	up.	All	table	related	instructions	require	two	cycles	to	complete	the	

Rev. 1.00 18 October 27, 2011 Rev. 1.00 19 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

operation.	These	areas	may	function	as	normal	program	memory	depending	on	the	requirements.

Once	TBHP	is	enabled,	the	instruction	"TABRDC	[m]"	reads	the	Program	Memory	data	as	defined	
by	 the	TBLP	and	TBHP	values.	 If	 the	Program	Memory	code	option	has	disabled	TBHP,	 the	
instruction	"TABRDC	[m]"	reads	the	Program	Memory	data	as	defined	by	TBLP	only	in	the	current	
Program	Memory	page.	

Look-up Table
Any	location	within	the	Program	Memory	can	be	defined	as	a	look-up	table	where	programmers	can	
store	fixed	data.	To	use	the	look-up	table,	the	table	pointer	must	first	be	setup	by	placing	the	lower	
order	address	of	the	look	up	data	to	be	retrieved	in	the	TBLP	register	and	the	higher	order	address	in	
the	TBHP	register.	These	two	registers	define	the	full	address	of	the	look-up	table.	Using	the	TBHP	
must	be	selected	by	configuration	option,	 if	not	used	table	data	can	still	be	accessed	but	only	the	
lower	byte	address	in	the	current	page	or	last	page	can	be	defined.

After	setting	up	the	table	pointers,	the	table	data	can	be	retrieved	from	the	current	Program	Memory	
page	or	 last	Program	Memory	page	using	 the	"TABRDC	[m]"	or	"TABRDL	[m]"	 instructions,	
respectively.	When	these	 instructions	are	executed,	 the	 lower	order	 table	byte	from	the	Program	
Memory	will	be	 transferred	 to	 the	user	defined	Data	Memory	 register	 [m]	as	specified	 in	 the	
instruction.	The	higher	order	table	data	byte	from	the	Program	Memory	will	be	transferred	to	the	
TBLH	special	register.	Any	unused	bits	in	this	transferred	higher	order	byte	will	be	read	as	"0".

� � � � � � � �
� � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

 � � �

 � � � �
 � 	 � � � � � � � � � � � �

 � �

Table Read – TBLP only

� � � � � � � �
� � � � � �

� � � � � � � � � � � � � � � �
 � 	
� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � �

� � � �

Table Read – TBLP/TBHP

Instruction
Table Location Bits

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
TABRDC [m] PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0
TABRDL [m] 1 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Table Location

Note:	PC11~PC8:	Current	Program	Counter	bits.	TBHP	register	Bit3~0	when	TBHP	is	enabled.	
@7~@0:	Table	Pointer	TBLP	bits

Table	High	Byte	Pointer	for	Current	Table	Read	TBHP	(Address	0X1F)

Register Bits Read/Write Functions
TBHP(0X1F) 3~0 R/W Store current table read bit11~bit8 data

Rev. 1.00 18 October 27, 2011 Rev. 1.00 19 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Table Program Example
The	following	example	shows	how	the	table	pointer	and	table	data	is	defined	and	retrieved	from	
the	microcontroller.	This	example	uses	raw	table	data	located	in	the	last	page	which	is	stored	there	
using	 the	ORG	statement.	The	value	at	 this	ORG	statement	 is	"F00H"	which	refers	 to	 the	start	
address	of	the	last	page	within	the	4K	Program	Memory	of	device.	The	table	pointer	is	setup	here	
to	have	an	initial	value	of	"06H".	This	will	ensure	that	the	first	data	read	from	the	data	table	will	be	
at	the	Program	Memory	address	"F06H"	or	6	locations	after	the	start	of	the	last	page.	Note	that	the	
value	for	the	table	pointer	is	referenced	to	the	first	address	of	the	present	page	if	the	"TABRDC	[m]"	
instruction	is	being	used.	The	high	byte	of	the	table	data	which	in	this	case	is	equal	to	zero	will	be	
transferred	to	the	TBLH	register	automatically	when	the	"TABRDL	[m]"	instruction	is	executed.

tempreg1 db ? ; temporary register #1
tempreg2 db ? ; temporary register #2
:
:
mov a,06h ; initialise table pointer-note that this
 ; address is referenced
mov tblp,a ; to the last page or present page
:
:
tabrdl tempreg1 ; transfers value in table referenced by table
 ; pointer to tempregl data at prog. memory
 ; address "F06H" transferred to tempreg1 and TBLH
dec tblp ; reduce value of table pointer by one
tabrdl tempreg2 ; transfers value in table referenced by table
 ; pointer to tempreg2 data at prog. memory
 ; address "F05H" transferred to tempreg2 and TBLH
 ; in this example the data "1AH" is transferred
 ; to tempreg1 and data "0FH" to register tempreg2
 ; the value "00H" will be transferred to the high
 ; byte register TBLH
:
:
org F00h ; sets initial address of last page
dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:
:

Because	 the	TBLH	register	 is	a	read-only	register	and	cannot	be	restored,	care	should	be	 taken	
to	ensure	 its	protection	if	both	the	main	routine	and	Interrupt	Service	Routine	use	the	table	read	
instructions.	 If	using	 the	 table	read	 instructions,	 the	Interrupt	Service	Routines	may	change	 the	
value	of	TBLH	and	subsequently	cause	errors	 if	used	again	by	 the	main	routine.	As	a	rule	 it	 is	
recommended	that	simultaneous	use	of	the	table	read	instructions	should	be	avoided.	However,	 in	
situations	where	simultaneous	use	cannot	be	avoided,	the	interrupts	should	be	disabled	prior	to	the	
execution	of	any	main	routine	table-read	instructions.	Note	that	all	table	related	instructions	require	
two	instruction	cycles	to	complete	their	operation.

Rev. 1.00 20 October 27, 2011 Rev. 1.00 21 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Data Memory
The	Data	Memory	is	a	volatile	area	of	8-bit	wide	RAM	internal	memory	and	is	the	location	where	
temporary	information	is	stored.	The	data	memory	is	divided	into	two	banks,	Bank0	and	Bank1.	The	
Bank0	is	subdivided	into	two	sections;	the	first	of	these	is	an	area	of	RAM	where	special	function	
registers	are	located.	These	registers	have	fixed	locations	and	are	necessary	for	correct	operation	of	
the	device.	Many	of	these	registers	can	be	read	from	and	written	to	directly	under	program	control,	
however,	 some	remain	protected	 from	user	manipulation.	The	second	area	of	Data	Memory	 is	
reserved	for	general	purpose	use.	In	addition,	the	Bank1	is	dedicated	for	the	USB	related	registers.	
All	locations	within	this	Data	Memory	are	read	and	write	accessible	under	program	control.	

Structure
The	Data	Memory	is	subdivided	into	two	banks,	all	of	which	are	implemented	in	8-bit	wide	RAM.	
The	Data	memory	located	in	Bank0	is	subdivided	into	two	sections,	the	Special	Purpose	and	General	
Purpose	Data	Memory.	

The	start	address	of	 the	Data	Memory	for	all	devices	 is	 the	address	“00H”.	Registers	which	are	
common	to	all	microcontrollers,	such	as	ACC,	PCL,	etc.,	have	the	same	Data	Memory	address.	The	
USB	control	registers	is	mapped	into	Bank1.

General Purpose Data Memory
All	microcontroller	programs	require	an	area	of	read/write	memory	where	temporary	data	can	be	
stored	and	retrieved	for	use	later.	It	is	this	area	of	RAM	memory	that	is	known	as	General	Purpose	
Data	Memory.	This	area	of	Data	Memory	is	fully	accessible	by	the	user	program	for	both	read	and	
write	operations.	By	using	the	"SET	[m].i"	and	"CLR	[m].i"	instructions,	individual	bits	can	be	set	
or	reset	under	program	control	giving	the	user	a	large	range	of	flexibility	for	bit	manipulation	in	the	
Data	Memory.

01H

Bank1Bank0

25H

3FH
40H

: Unused, read as “00”

DFH

USB

IAR0

MP0

00H

4AH

Special
Purpose
Registers

General
Purpose
Registers

IAR0

MP0

Data Memory Structure

Note:	Most	of	 the	Data	Memory	bits	 can	be	directly	manipulated	using	 the	"SET	[m].i"	 and	
"CLR	[m].i"	with	 the	exception	of	a	 few	dedicated	bits.	The	Data	Memory	can	also	be	
accessed	through	the	memory	pointer	register	MP.

Rev. 1.00 20 October 27, 2011 Rev. 1.00 21 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
 	 � � � � � � � 	 � � �

� � � �
� � �
� � � �
� � �
� �
� � �
� � �
� � � �
� � � �
� � � �

� � � � � �
� � � � �

� � � �
� � � � �
� � � � �
� � � � �
� � � � �

� �
� � �
� �
� � �

� �
� � �
� � � �

� � � � �
� � � �
� � �
� � �
� � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � � � � �
� � � � � � � �

� � �
� � � � �
� � � �
� � � �
� � � �

� � � � � � �
� � � �
� � � �
� � � �

� � � � � � � � � �

Special Purpose Data Memory

Special Function Registers
To	ensure	successful	operation	of	the	microcontroller,	certain	internal	registers	are	implemented	in	
the	Data	Memory	area.	These	registers	ensure	correct	operation	of	internal	functions	such	as	timers,	
interrupts,	etc.,	as	well	as	external	functions	such	as	I/O	data	control.	The	location	of	these	registers	
within	the	Data	Memory	begins	at	the	address	00H.	Any	unused	Data	Memory	locations	between	
these	special	function	registers	and	the	point	where	the	General	Purpose	Memory	begins	is	reserved	
and	attempting	to	read	data	from	these	locations	will	return	a	value	of	00H.

Indirect Addressing Register – IAR0, IAR1
The	Indirect	Addressing	Registers,	IAR0	and	IAR1,	although	having	their	locations	in	normal	RAM	
register	space,	do	not	actually	physically	exist	as	normal	registers.	The	method	of	indirect	addressing	
for	RAM	data	manipulation	uses	 these	Indirect	Addressing	Registers	and	Memory	Pointers,	 in	
contrast	to	direct	memory	addressing,	where	the	actual	memory	address	is	specified.	Actions	on	the	
IAR0	and	IAR1	registers	will	result	in	no	actual	read	or	write	operation	to	these	registers	but	rather	
to	the	memory	location	specified	by	their	corresponding	Memory	Pointer,	MP0	or	MP1.	Acting	as	
a	pair,	IAR0	and	MP0	can	together	only	access	data	from	Bank	0,	while	the	IAR1	and	MP1	register	
pair	can	access	data	from	both	Bank	0	and	Bank	1.	As	the	Indirect	Addressing	Registers	are	not	
physically	implemented,	reading	the	Indirect	Addressing	Registers	indirectly	will	return	a	result	of	
"00H"	and	writing	to	the	registers	indirectly	will	result	in	no	operation.

Rev. 1.00 22 October 27, 2011 Rev. 1.00 23 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Memory Pointer – MP0, MP1
For	all	devices,	 two	Memory	Pointers,	known	as	MP0	and	MP1	are	provided.	These	Memory	
Pointers	are	physically	implemented	in	the	Data	Memory	and	can	be	manipulated	in	the	same	way	
as	normal	registers	providing	a	convenient	way	with	which	to	address	and	track	data.	When	any	
operation	to	 the	relevant	Indirect	Addressing	Registers	 is	carried	out,	 the	actual	address	 that	 the	
microcontroller	is	directed	to,	is	the	address	specified	by	the	related	Memory	Pointer.	MP0	can	only	
access	data	in	Bank	0	while	MP1	can	access	both	banks.

data .section "data"
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0 "code"
org 00h
start:
mov a,04h ; setup size of block
mov block,a
mov a,offset adres1 ; Accumulator loaded with first RAM address
mov mp0,a ; setup memory pointer with first RAM address
loop:
clr IAR0 ; clear the data at address defined by MP0
inc mp0 ; increment memory pointer
sdz block ; check if last memory location has been cleared
jmp loop
continue:

The	important	point	to	note	here	is	that	in	the	example	shown	above,	no	reference	is	made	to	specific	
Data	Memory	addresses.

Accumulator – ACC
The	Accumulator	 is	central	 to	 the	operation	of	any	microcontroller	and	 is	closely	 related	with	
operations	carried	out	by	 the	ALU.	The	Accumulator	 is	 the	place	where	all	 intermediate	results	
from	the	ALU	are	stored.	Without	 the	Accumulator	 it	would	be	necessary	 to	write	 the	result	of	
each	calculation	or	logical	operation	such	as	addition,	subtraction,	shift,	etc.,	 to	the	Data	Memory	
resulting	in	higher	programming	and	timing	overheads.	Data	 transfer	operations	usually	 involve	
the	temporary	storage	function	of	the	Accumulator;	for	example,	when	transferring	data	between	
one	user	defined	register	and	another,	 it	 is	necessary	 to	do	 this	by	passing	the	data	 through	the	
Accumulator	as	no	direct	transfer	between	two	registers	is	permitted.

Program Counter Low Register – PCL
To	provide	additional	program	control	functions,	 the	 low	byte	of	 the	Program	Counter	 is	made	
accessible	to	programmers	by	locating	it	within	the	Special	Purpose	area	of	the	Data	Memory.	By	
manipulating	this	register,	direct	jumps	to	other	program	locations	are	easily	implemented.	Loading	
a	value	directly	into	this	PCL	register	will	cause	a	jump	to	the	specified	Program	Memory	location,	
however,	as	the	register	is	only	8-bit	wide,	only	jumps	within	the	current	Program	Memory	page	are	
permitted.	When	such	operations	are	used,	note	that	a	dummy	cycle	will	be	inserted.

Rev. 1.00 22 October 27, 2011 Rev. 1.00 23 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Look-up Table Registers – TBLP, TBLH, TBHP
These	two	special	function	registers	are	used	to	control	operation	of	the	look-up	table	which	is	stored	
in	the	Program	Memory.	TBLP	and	TBHP	are	the	table	pointers	and	indicate	the	location	where	the	
table	data	is	located.	Their	value	must	be	setup	before	any	table	read	commands	are	executed.	Their	
values	can	be	changed,	for	example	using	the	"INC"	or	"DEC"	instructions,	allowing	for	easy	table	
data	pointing	and	reading.	TBLH	is	the	location	where	the	high	order	byte	of	the	table	data	is	stored	
after	a	table	read	data	instruction	has	been	executed.

Status Register – STATUS
This	8-bit	register	contains	the	zero	flag	(Z),	carry	flag	(C),	auxiliary	carry	flag	(AC),	overflow	flag	
(OV),	power	down	flag	(PDF),	and	watchdog	time-out	flag	(TO).	These	arithmetic/logical	operation	
and	system	management	flags	are	used	to	record	the	status	and	operation	of	the	microcontroller.

With	the	exception	of	the	TO	and	PDF	flags,	bits	in	the	status	register	can	be	altered	by	instructions	
like	most	other	registers.	Any	data	written	into	the	status	register	will	not	change	the	TO	or	PDF	flag.	
In	addition,	operations	related	to	the	status	register	may	give	different	results	due	to	the	different	
instruction	operations.	The	TO	flag	can	be	affected	only	by	a	system	power-up,	a	WDT	time-out	or	
by	executing	the	"CLR	WDT"	or	"HALT"	instruction.	The	PDF	flag	is	affected	only	by	executing	
the	"HALT"	or	"CLR	WDT"	instruction	or	during	a	system	power-up.

The	Z,	OV,	AC	and	C	flags	generally	reflect	the	status	of	the	latest	operations.

•	 C	is	set	if	an	operation	results	in	a	carry	during	an	addition	operation	or	if	a	borrow	does	not	take	
place	during	a	subtraction	operation;	otherwise	C	is	cleared.	C	is	also	affected	by	a	rotate	through	
carry	instruction.

•	 AC	is	set	if	an	operation	results	in	a	carry	out	of	the	low	nibbles	in	addition,	or	no	borrow	from	
the	high	nibble	into	the	low	nibble	in	subtraction;	otherwise	AC	is	cleared.

•	 Z	is	set	if	the	result	of	an	arithmetic	or	logical	operation	is	zero;	otherwise	Z	is	cleared.

•	 OV	 is	set	 if	an	operation	results	 in	a	carry	into	the	highest-order	bit	but	not	a	carry	out	of	the	
highest-order	bit,	or	vice	versa;	otherwise	OV	is	cleared.

•	 PDF	 is	cleared	by	a	system	power-up	or	executing	the	"CLR	WDT"	instruction.	PDF	is	set	by	
executing	the	"HALT"	instruction.

•	 TO	is	cleared	by	a	system	power-up	or	executing	the	"CLR	WDT"	or	"HALT"	instruction.	TO	is	
set	by	a	WDT	time-out.

In	addition,	on	entering	an	interrupt	sequence	or	executing	a	subroutine	call,	the	status	register	will	
not	be	pushed	onto	the	stack	automatically.	If	the	contents	of	the	status	registers	are	important	and	if	
the	interrupt	routine	can	change	the	status	register,	precautions	must	be	taken	to	correctly	save	it.

Rev. 1.00 24 October 27, 2011 Rev. 1.00 25 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

STATUS Register

Bit 7 6 5 4 3 2 1 0
Name — — TO PDF OV Z AC C
R/W — — R R R/W R/W R/W R/W
POR — — 0 0 x x x x

“x” unknown
Bit	7,	6	 Unimplemented,	read	as	“0”
Bit	5	 TO:	Watchdog	Time-Out	flag

0:	after	power	up	or	executing	the	“CLR	WDT”	or	“HALT”	instruction
1:	a	watchdog	time-out	occurred

Bit	4	 PDF:	Power	down	flag
0:	after	power	up	or	executing	the	“CLR	WDT”	instruction
1:	by	executing	the	“HALT”	instruction

Bit	3	 OV:	Overflow	flag
0:	no	overflow
1:	an	operation	results	in	a	carry	into	the	highest-order	bit	but	not	a	carry	out	of	the	
highest-order	bit	or	vice	versa

Bit	2	 Z:	Zero	flag
0:	the	result	of	an	arithmetic	or	logical	operation	is	not	zero
1:	the	result	of	an	arithmetic	or	logical	operation	is	zero

Bit	1	 AC:	Auxiliary	flag
0:	no	auxiliary	carry
1:	an	operation	results	in	a	carry	out	of	the	low	nibbles	in	addition,	or	no	borrow	
from	the	high	nibble	into	the	low	nibble	in	subtraction

Bit	0	 C:	Carry	flag
0:	no	carry-out
1:	an	operation	results	in	a	carry	during	an	addition	operation	or	if	a	borrow	does	not	
take	place	during	a	subtraction	operation

C	is	also	affected	by	a	rotate	through	carry	instruction.

Bank Pointer – BP
The	Special	Purpose	Data	Memory	is	divided	into	two	Banks,	Bank	0	and	Bank	1.	The	USB	control	
registers	are	located	in	Bank	1,	while	all	other	registers	are	located	in	Bank	0.	The	Bank	Pointer	
selects	which	bank	data	is	to	be	accessed	from.	If	Bank	0	is	to	be	accessed	then	BP	must	be	set	to	a	
value	of	00H,	while	if	Bank	1	is	to	be	accessed	then	BP	must	be	set	to	a	value	of	01H.

� � � � � � � � � � � �
� � � �

� � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
 � � � � � �
 	 �

Bank Pointer

Rev. 1.00 24 October 27, 2011 Rev. 1.00 25 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Input/Output Ports
Holtek	microcontrollers	offer	considerable	flexibility	on	their	I/O	ports.	With	the	input	or	output	
designation	of	every	pin	 fully	under	user	program	control,	pull-high	options	 for	all	ports	and	
wake-up	options	on	certain	pins,	the	user	is	provided	with	an	I/O	structure	to	meet	the	needs	of	a	
wide	range	of	application	possibilities.

Depending	upon	which	package	 is	chosen,	 the	microcontroller	provides	up	 to	15	bidirectional	
input/output	lines	labeled	with	port	names	PA,	PB	and	PE.

These	I/O	ports	are	mapped	to	the	Data	Memory	with	addresses	as	shown	in	the	Special	Purpose	
Data	Memory	table.	For	input	operation,	these	ports	are	non-latching,	which	means	the	inputs	must	
be	ready	at	the	T2	rising	edge	of	instruction	"MOV	A,[m]",	where	m	denotes	the	port	address.	For	
output	operation,	all	the	data	is	latched	and	remains	unchanged	until	the	output	latch	is	rewritten.

Pull-high Resistors
Many	product	applications	 require	pull-high	resistors	 for	 their	 switch	 inputs	usually	 requiring	
the	use	of	an	external	resistor.	To	eliminate	 the	need	for	 these	external	resistors,	 I/O	pins,	when	
configured	as	an	input	have	the	capability	of	being	connected	to	an	internal	pull-high	resistor.	The	
pull-high	resistors	are	selectable	via	configuration	options	and	are	implemented	using	weak	PMOS	
transistors.	A	pin	or	nibble	option	on	the	I/O	ports	can	be	selected	to	select	pull-high	Resistors.

Note	that	the	PE2	is	pin	shared	with	reset	pin,	the	I/O	structure	is	NMOS	open	drain,	and	there	is	no	
pull-high	resistor	for	this	pin.

Port A CMOS/NMOS/PMOS Structure
The	pins	on	Port	A	can	be	setup	via	configuration	option	 to	be	either	CMOS,	NMOS	or	PMOS	
types.

Port A VDD/V33O Option Structure
The	power	supply	for	 the	Port	A	pins	can	be	setup	via	configuration	option	to	be	either	VDD	or	
V33O.

Port Pin Wake-up
If	the	HALT	instruction	is	executed,	the	device	will	enter	the	Power	Down	Mode,	where	the	system	
clock	will	stop	resulting	in	power	being	conserved,	a	feature	that	is	important	for	battery	and	other	
low-power	applications.	Various	methods	exist	to	wake-up	the	microcontroller,	one	of	which	is	to	
change	the	logic	condition	on	one	of	the	port	pins	from	high	to	low.	After	a	HALT	instruction	forces	
the	microcontroller	into	entering	the	Power	Down	Mode,	the	processor	will	remain	in	a	low-power	
state	until	the	logic	condition	of	the	selected	wake-up	pin	on	the	port	pin	changes	from	high	to	low.	
This	function	is	especially	suitable	for	applications	that	can	be	woken	up	via	external	switches.	Each	
pin	on	PA,	PB	and	PE	has	the	capability	to	wake-up	the	device	on	an	external	falling	edge.	Note	
that	some	pins	can	only	be	setup	nibble	wide	whereas	other	can	be	bit	selected	to	have	a	wake-up	
function.

Rev. 1.00 26 October 27, 2011 Rev. 1.00 27 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

I/O Port Control Registers
Each	 I/O	port	has	 its	 own	control	 register	PAC,	PBC	and	PEC,	 to	 control	 the	 input/output	
configuration.	With	 this	control	 register,	each	CMOS	output	or	 input	with	or	without	pull-high	
resistor	structures	can	be	reconfigured	dynamically	under	software	control.	Each	of	the	I/O	ports	is	
directly	mapped	to	a	bit	in	its	associated	port	control	register.	Note	that	several	pins	can	be	setup	to	
have	NMOS	outputs	using	configuration	options.

For	the	I/O	pin	to	function	as	an	input,	the	corresponding	bit	of	the	control	register	must	be	written	
as	a	"1".	This	will	then	allow	the	logic	state	of	the	input	pin	to	be	directly	read	by	instructions.	When	
the	corresponding	bit	of	the	control	register	is	written	as	a	"0",	the	I/O	pin	will	be	setup	as	an	output.	
If	 the	pin	is	currently	setup	as	an	output,	 instructions	can	still	be	used	to	read	the	output	register.	
However,	it	should	be	noted	that	the	program	will	in	fact	only	read	the	status	of	the	output	data	latch	
and	not	the	actual	logic	status	of	the	output	pin.

Pin-shared Functions
The	flexibility	of	the	microcontroller	range	is	greatly	enhanced	by	the	use	of	pins	that	have	more	
than	one	function.	Limited	numbers	of	pins	can	force	serious	design	constraints	on	designers	but	by	
supplying	pins	with	multi-functions,	many	of	these	difficulties	can	be	overcome.	For	some	pins,	the	
chosen	function	of	the	multi-function	I/O	pins	is	set	by	configuration	options	while	for	others	the	
function	is	set	by	application	program	control.

•	 External	Timer0	Clock	Input
The	external	timer	pin	TMR0	is	pin-shared	with	the	I/O	pin	PA6.	To	configure	this	pin	to	operate	
as	timer	input,	 the	corresponding	control	bits	in	the	timer	control	register	must	be	correctly	set.	
For	applications	that	do	not	require	an	external	timer	input,	this	pin	can	be	used	as	a	normal	I/O	
pin.	Note	that	if	used	as	a	normal	I/O	pin	the	timer	mode	control	bits	in	the	timer	control	register	
must	select	 the	 timer	mode,	which	has	an	internal	clock	source,	 to	prevent	 the	input	pin	from	
interfering	with	the	timer	operation.

•	 External	Timer1	Clock	Input
The	external	timer	pin	TMR1	is	pin-shared	with	the	I/O	pin	PA7.	To	configure	this	pin	to	operate	
as	timer	input,	 the	corresponding	control	bits	in	the	timer	control	register	must	be	correctly	set.	
For	applications	that	do	not	require	an	external	timer	input,	this	pin	can	be	used	as	a	normal	I/O	
pin.	Note	that	if	used	as	a	normal	I/O	pin	the	timer	mode	control	bits	in	the	timer	control	register	
must	select	 the	 timer	mode,	which	has	an	internal	clock	source,	 to	prevent	 the	input	pin	from	
interfering	with	the	timer	operation.

I/O Pin Structures
The	diagram	illustrates	a	generic	I/O	pin	internal	structures.	As	the	exact	logical	construction	of	the	
I/O	pin	will	differ	and	as	the	pin-shared	structures	are	not	illustrated		this	diagram	is	supplied	as	a	
guide	only	to	assist	with	the	functional	understanding	of	the	I/O	pins.

Rev. 1.00 26 October 27, 2011 Rev. 1.00 27 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

� � � � � � � � � � � � �

�
�
�

� � � � � � � � � �
 	 �� � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � �

� �

� �
�

� �

� �
�

� 	 � � � 	 � � �
 �
� � � � � � �

� �
 � � � � 	 � � � 	 � � � � �
 � � � �

�
 � � � � � � �

� � � � � � 	 � � � 	 � � � � �
 � � � �

� �
 � � � � � � � � � � �
 � � � �

� � � � � �
 �

 � � � �
 �

�

�

� � � �
� � � � �

� � � � �
 �
� � �
 	 �

Input/Output Ports

�
�
�

� � � � � � � � � � � � � �� � � � � � � � � � � � � � �
 	 � �

� � � � � � � � � � � � � � � � �

� �

� � �

� �

� � �

� � � � � � � � � � �
� � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � �

�

�

� 	 � � � � � �
 	 � � � � � �

 	 � � � 	 �

Input/output port (PE2)

Rev. 1.00 28 October 27, 2011 Rev. 1.00 29 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Programming Considerations
Within	the	user	program,	one	of	the	first	things	to	consider	is	port	initialisation.	After	a	reset,	all	of	
the	data	and	port	control	register	will	be	set	high.	This	means	that	all	I/O	pins	will	default	to	an	input	
state,	 the	level	of	which	depends	on	the	other	connected	circuitry	and	whether	pull-high	options	
have	been	selected.	If	the	PAC,	PBC	and	PEC	port	control	register,	are	then	programmed	to	setup	
some	pins	as	outputs,	these	output	pins	will	have	an	initial	high	output	value	unless	the	associated	
PA,	PB	and	PE	port	data	registers	are	first	programmed.	Selecting	which	pins	are	inputs	and	which	
are	outputs	can	be	achieved	byte-wide	by	loading	the	correct	value	into	the	port	control	register	or	
by	programming	individual	bits	in	the	port	control	register	using	the	"SET	[m].i"	and	"CLR	[m].i"	
instructions.	Note	that	when	using	these	bit	control	instructions,	a	read-modify-write	operation	takes	
place.	The	microcontroller	must	first	read	in	the	data	on	the	entire	port,	modify	it	to	the	required	new	
bit	values	and	then	rewrite	this	data	back	to	the	output	ports.

� � � � � � � � � � � � � � � �

� �

 � � � � � �
 	 � � �

� � � � � � � � �

Read/Write Timing

All	pins	have	the	additional	capability	of	providing	wake-up	functions.	When	the	device	is	in	the	
Power	Down	Mode,	various	methods	are	available	to	wake	the	device	up.	One	of	these	is	a	high	to	
low	transition	of	any	of	the	Port	pins.	Single	or	multiple	pins	can	be	setup	to	have	this	function.

Timer/Event Counters
The	provision	of	timers	form	an	important	part	of	any	microcontroller,	giving	the	designer	a	means	
of	carrying	out	time	related	functions.	This	device	contains	two	count-up	timers	of	8-bit	and	16-bit	
capacities	respectively.	As	each	timer	has	three	different	operating	modes,	they	can	be	configured	to	
operate	as	a	general	timer,	an	external	event	counter	or	as	a	pulse	width	measurement	device.

There	are	 two	 types	of	 registers	 related	 to	 the	Timer/Event	Counters.	The	 first	 is	 the	 register	
that	contains	 the	actual	value	of	 the	Timer/Event	Counter	and	into	which	an	initial	value	can	be	
preloaded,	and	is	known	as	TMR0,	TMR1H	or	TMR1L.	Reading	from	this	register	retrieves	the	
contents	of	 the	Timer/Event	Counter.	The	second	type	of	associated	register	 is	 the	Timer	Control	
Register,	which	defines	the	timer	options	and	determines	how	the	Timer/Event	Counter	is	to	be	used,	
and	has	the	name	TMR0C	or	TMR1C.	This	device	can	have	the	timer	clocks	configured	to	come	
from	the	internal	clock	sources.	In	addition,	the	timer	clock	source	can	also	be	configured	to	come	
from	the	external	timer	pins.

The	external	clock	source	is	used	when	the	Timer/Event	Counter	is	in	the	event	counting	mode,	the	
clock	source	being	provided	on	the	external	timer	pin.	The	pin	has	the	name	TMR0	or	TMR1	and	
is	pin-shared	with	an	I/O	pin.	Depending	upon	the	condition	of	 the	T0E	or	T1E	bit	 in	 the	Timer	
Control	Register,	each	high	to	low,	or	 low	to	high	transition	on	the	external	 timer	input	pin	will	
increment	the	Timer/Event	Counter	by	one.

Rev. 1.00 28 October 27, 2011 Rev. 1.00 29 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Configuring the Timer/Event Counter Input Clock Source
The	Timer/Event	Counter's	clock	can	originate	from	various	sources.	The	system	clock	source	is	
used	when	the	Timer/Event	Counter	0	is	in	the	timer	mode	or	in	the	pulse	width	measurement	mode.	
The	 instruction	clock	source	(system	clock	source	divided	by	4)	 is	used	when	 the	Timer/Event	
Counter	1	is	in	the	timer	mode	or	in	the	pulse	width	measurement	mode.	The	external	clock	source	is	
used	when	the	Timer/Event	Counter	is	in	the	event	counting	mode,	the	clock	source	being	provided	
on	the	external	timer	pin,	TMR0	or	TMR1.	Depending	upon	the	condition	of	the	T0E	or	T1E	bit,	
each	high	to	low,	or	low	to	high	transition	on	the	external	timer	pin	will	increment	the	counter	by	
one.

� � � � � �

� � �

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � �

� � � �

 � � � 	 � � � � � � � � � �

� � � � � � � � � � �
� � � � � � �

� 	 � 	 � � � �

� � � 	 �

� � � � � � �
� � � � � � � � � � � �

� �

� � � � � � � �

� � � � � � � �

8-bit Timer/Event Counter 0 Structure

� � � � �

� � �

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � �

� � �
 � �
	 � � � � � � � � � � � � � �

� � � � �
 � �

� � � � �

� � � � � � �
� � � � � � � � � � � �

� � � �
 � � �

 � � � � �

� � � � � � � �

� � � �

� � � �
 � � � � � � �
 � � �

� � �
 �

� � � � � �

16-bit Timer/Event Counter 1 Structure

Timer Register – TMR0, TMR1L/TMR1H
The	timer	registers	are	special	function	registers	located	in	the	Special	Purpose	RAM	Data	Memory	
and	are	the	places	where	the	actual	timer	values	are	stored.	For	8-bit	Timer/Event	Counter	0,	this	
register	 is	known	as	TMR0.	For	16-bit	Timer/Event	Counter	1,	 the	 timer	registers	are	known	as	
TMR1L	and	TMR1H.	The	value	in	the	timer	registers	increases	by	one	each	time	an	internal	clock	
pulse	is	received	or	an	external	transition	occurs	on	the	external	timer	pin.	The	timer	will	count	from	
the	initial	value	loaded	by	the	preload	register	to	the	full	count	of	FFH	for	the	8-bit	timer	or	FFFFH	
for	the	16-bit	timer	at	which	point	the	timer	overflows	and	an	internal	interrupt	signal	is	generated.	
The	timer	value	will	then	be	reset	with	the	initial	preload	register	value	and	continue	counting.

To	achieve	a	maximum	full	range	count	of	FFH	for	the	8-bit	timer	or	FFFFH	for	the	16-bit	timer,	
the	preload	registers	must	first	be	cleared	to	all	zeros.	It	should	be	noted	that	after	power-on,	 the	
preload	register	will	be	in	an	unknown	condition.	Note	that	if	the	Timer/Event	Counter	is	switched	
off	and	data	is	written	to	its	preload	registers,	this	data	will	be	immediately	written	into	the	actual	
timer	registers.	However,	if	the	Timer/Event	Counter	is	enabled	and	counting,	any	new	data	written	
into	the	preload	data	registers	during	this	period	will	remain	in	the	preload	registers	and	will	only	be	
written	into	the	timer	registers	the	next	time	an	overflow	occurs.

Rev. 1.00 30 October 27, 2011 Rev. 1.00 31 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

For	the	16-bit	Timer/Event	Counter	which	has	both	low	byte	and	high	byte	timer	registers,	accessing	
these	registers	is	carried	out	in	a	specific	way.	It	must	be	note	when	using	instructions	to	preload	
data	into	the	low	byte	timer	register,	namely	TMR1L,	the	data	will	only	be	placed	in	a	low	byte	
buffer	and	not	directly	into	the	low	byte	timer	register.	The	actual	transfer	of	the	data	into	the	low	
byte	timer	register	is	only	carried	out	when	a	write	to	its	associated	high	byte	timer	register,	namely	
TMR1H,	is	executed.	On	the	other	hand,	using	instructions	to	preload	data	into	the	high	byte	timer	
register	will	result	in	the	data	being	directly	written	to	the	high	byte	timer	register.	At	the	same	time	
the	data	in	the	low	byte	buffer	will	be	transferred	into	its	associated	low	byte	timer	register.	For	this	
reason,	the	low	byte	timer	register	should	be	written	first	when	preloading	data	into	the	16-bit	timer	
registers.	It	must	also	be	noted	that	to	read	the	contents	of	the	low	byte	timer	register,	a	read	to	the	
high	byte	timer	register	must	be	executed	first	 to	latch	the	contents	of	the	low	byte	timer	register	
into	its	associated	low	byte	buffer.	After	this	has	been	done,	the	low	byte	timer	register	can	be	read	
in	the	normal	way.	Note	that	reading	the	low	byte	timer	register	will	result	in	reading	the	previously	
latched	contents	of	the	low	byte	buffer	and	not	the	actual	contents	of	the	low	byte	timer	register.

Timer Control Register – TMR0C/TMR1C
The	flexible	features	of	 the	Holtek	microcontroller	Timer/Event	Counters	enable	them	to	operate	
in	 three	different	modes,	 the	options	of	which	are	determined	by	the	contents	of	 their	respective	
control	register.	For	devices	are	two	timer	control	registers	known	as	TMR0C,	TMR1C.	It	 is	 the	
timer	control	register	together	with	its	corresponding	timer	registers	that	control	the	full	operation	
of	the	Timer/Event	Counters.	Before	the	timers	can	be	used,	it	is	essential	that	the	appropriate	timer	
control	register	is	fully	programmed	with	the	right	data	to	ensure	its	correct	operation,	a	process	that	
is	normally	carried	out	during	program	initialization.

To	choose	which	of	the	three	modes	the	timer	is	to	operate	in,	either	in	the	timer	mode,	the	event	
counting	mode	or	the	pulse	width	measurement	mode,	bits	7	and	6	of	the	Timer	Control	Register,	
which	are	known	as	the	bit	pair	T0M1/T0M0	or	T1M1/T1M0	respectively,	depending	upon	which	
timer	is	used,	must	be	set	to	the	required	logic	levels.	The	timer-on	bit,	which	is	bit	4	of	the	Timer	
Control	Register	and	known	as	T0ON	or	T1ON,	depending	upon	which	timer	is	used,	provides	the	
basic	on/off	control	of	the	respective	timer.	Setting	the	bit	high	allows	the	counter	to	run,	clearing	
the	bit	stops	the	counter.	If	the	timer	is	in	the	event	count	or	pulse	width	measurement	mode,	the	
active	transition	edge	level	type	is	selected	by	the	logic	level	of	bit	3	of	the	Timer	Control	Register	
which	is	known	as	T0E	or	T1E,	depending	upon	which	timer	is	used.

Rev. 1.00 30 October 27, 2011 Rev. 1.00 31 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

TMR0C Register

Bit 7 6 5 4 3 2 1 0
Name T0M1 T0M0 ― T0ON T0E ― ― ―
R/W R/W R/W ― R/W R/W ― ― ―
POR 0 0 ― 0 1 ― ― ―

Bit	7,	6	 T0M1,	T0M0:	Timer	0	operation	mode	selection
00:	no	mode	available
01:	event	counter	mode
10:	timer	mode
11:	pulse	width	capture	mode

Bit	5	 Unimplemented
Bit	4	 T0ON:	Timer/Event	Counter	counting	enable

0:	disable
1:	enable

Bit	3	 T0E:
Event	Counter	active	edge	selection
0:	count	on	rising	edge
1:	count	on	falling	edge

Pulse	Width	Capture	active	edge	selection
0:	start	counting	on	falling	edge,	stop	on	rising	edge
1:	start	counting	on	rising	edge,	stop	on	falling	edge

Bit	2~0	 Unimplemented

TMR1C Register

Bit 7 6 5 4 3 2 1 0
Name T1M1 T1M0 ― T1ON T1E ― ― ―
R/W R/W R/W ― R/W R/W ― ― ―
POR 0 0 ― 0 1 ― ― ―

Bit	7,	6	 T1M1,	T1M0:	Timer	1	operation	mode	selection
00:	no	mode	available
01:	event	counter	mode
10:	timer	mode
11:	pulse	width	capture	mode

Bit	5	 Unimplemented
Bit	4	 T1ON:	Timer/Event	Counter	counting	enable

0:	disable
1:	enable

Bit	3	 T1E:
Event	Counter	active	edge	selection
0:	count	on	rising	edge
1:	count	on	falling	edge

Pulse	Width	Capture	active	edge	selection
0:	start	counting	on	falling	edge,	stop	on	rising	edge
1:	start	counting	on	rising	edge,	stop	on	falling	edge

Bit	2~0	 Unimplemented

Rev. 1.00 32 October 27, 2011 Rev. 1.00 33 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Configuring the Timer Mode
In	this	mode,	the	Timer/Event	Counter	can	be	utilised	to	measure	fixed	time	intervals,	providing	an	
internal	interrupt	signal	each	time	the	Timer/Event	Counter	overflows.	To	operate	in	this	mode,	the	
Operating	Mode	Select	bit	pair,	T0M1/T0M0	or	T1M1/T1M0,	in	the	Timer	Control	Register	must	
be	set	to	the	correct	value	as	shown.

Control Register Operating Mode
Select Bits for the Timer Mode

Bit7 Bit6
1 0

In	this	mode	the	internal	clock,	fSYS/4	is	used	as	the	internal	clock	for	the	Timer/Event	Counters.	
After	the	other	bits	in	the	Timer	Control	Register	have	been	setup,	the	enable	bit	T0ON	or	T1ON,	
which	is	bit	4	of	the	Timer	Control	Register,	can	be	set	high	to	enable	the	Timer/Event	Counter	to	
run.	Each	time	an	internal	clock	cycle	occurs,	the	Timer/Event	Counter	increments	by	one.	When	it	
is	full	and	overflows,	an	interrupt	signal	is	generated	and	the	Timer/Event	Counter	will	reload	the	
value	already	loaded	into	the	preload	register	and	continue	counting.	The	interrupt	can	be	disabled	
by	ensuring	 that	 the	Timer/Event	Counter	Interrupt	Enable	bit	 in	 the	Interrupt	Control	Register,	
INTC0,	is	reset	to	zero.

� � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
 � � � � � � � � 	 � � � � � � � � 	 � � � �

Timer Mode Timing Chart

Configuring the Event Counter Mode
In	this	mode,	a	number	of	externally	changing	logic	events,	occurring	on	the	external	timer	pin,	can	
be	recorded	by	the	Timer/Event	Counter.	To	operate	in	this	mode,	 the	Operating	Mode	Select	bit	
pair,	T0M1/T0M0	or	T1M1/T1M0,	in	the	Timer	Control	Register	must	be	set	to	the	correct	value	as	
shown.

Control Register Operating Mode
Select Bits for the Event Counter Mode

Bit7 Bit6
0 1

In	this	mode,	 the	external	 timer	pin,	TMR0	or	TMR1,	is	used	as	 the	Timer/Event	Counter	clock	
source,	however	it	is	not	divided	by	the	internal	prescaler.	After	the	other	bits	in	the	Timer	Control	
Register	have	been	setup,	 the	enable	bit	T0ON	or	T1ON,	which	 is	bit	4	of	 the	Timer	Control	
Register,	can	be	set	high	to	enable	the	Timer/Event	Counter	to	run.	If	the	Active	Edge	Select	bit	T0E	
or	T1E,	which	is	bit		3	of	the	Timer	Control	Register,	is	low,	the	Timer/Event	Counter	will	increment	
each	time	the	external	 timer	pin	receives	a	low	to	high	transition.	If	 the	Active	Edge	Select	bit	 is	
high,	the	counter	will	increment	each	time	the	external	timer	pin	receives	a	high	to	low	transition.	
When	it	 is	full	and	overflows,	an	interrupt	signal	 is	generated	and	the	Timer/Event	Counter	will	
reload	the	value	already	loaded	into	the	preload	register	and	continue	counting.	The	interrupt	can	
be	disabled	by	ensuring	that	the	Timer/Event	Counter	Interrupt	Enable	bit	in	the	Interrupt	Control	
Register,	INTC0,	is	reset	to	zero.

As	the	external	timer	pin	is	shared	with	an	I/O	pin,	to	ensure	that	the	pin	is	configured	to	operate	as	
an	event	counter	input	pin,	two	things	have	to	happen.	The	first	is	to	ensure	that	the	Operating	Mode	
Select	bits	 in	 the	Timer	Control	Register	place	 the	Timer/Event	Counter	 in	 the	Event	Counting	
Mode,	the	second	is	to	ensure	that	the	port	control	register	configures	the	pin	as	an	input.	It	should	
be	noted	that	in	the	event	counting	mode,	even	if	the	microcontroller	is	in	the	Power	Down	Mode,	
the	Timer/Event	Counter	will	continue	 to	 record	externally	changing	 logic	events	on	 the	 timer	
input	pin.	As	a	result	when	the	timer	overflows	it	will	generate	a	timer	interrupt	and	corresponding	
wake-up	source.

Rev. 1.00 32 October 27, 2011 Rev. 1.00 33 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

� � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � �
� � � � � � � � � � � � � � � � � � �� � � � � �

Event Counter Mode Timing Chart

Configuring the Pulse Width Measurement Mode
In	 this	mode,	 the	Timer/Event	Counter	can	be	utilised	 to	measure	 the	width	of	external	pulses	
applied	 to	 the	external	 timer	pin.	To	operate	 in	 this	mode,	 the	Operating	Mode	Select	bit	pair,	
T0M1/T0M0	or	T1M1/T1M0,	 in	 the	Timer	Control	Register	must	be	set	 to	 the	correct	valueas	
shown.

Control Register Operating Mode
Select Bits for the Pulse Width Capture Mode

Bit7 Bit6
1 1

In	this	mode	the	internal	clock,	fSYS/4	is	used	as	the	internal	clock	for	the	Timer/Event	Counters.	
After	the	other	bits	in	the	Timer	Control	Register	have	been	setup,	the	enable	bit	T0ON	or	T1ON,	
which	is	bit	4	of	 the	Timer	Control	Register,	can	be	set	high	to	enable	the	Timer/Event	Counter,	
however	it	will	not	actually	start	counting	until	an	active	edge	is	received	on	the	external	timer	pin.

If	the	Active	Edge	Select	bit	T0E	or	T1E,	which	is	bit	3	of	the	Timer	Control	Register,	is	low,	once	a	
high	to	low	transition	has	been	received	on	the	external	timer	pin,	TMR0	or	TMR1,	the	Timer/Event	
Counter	will	start	counting	until	the	external	timer	pin	returns	to	its	original	high	level.	At	this	point	
the	enable	bit	will	be	automatically	reset	to	zero	and	the	Timer/Event	Counter	will	stop	counting.	If	
the	Active	Edge	Select	bit	is	high,	the	Timer/Event	Counter	will	begin	counting	once	a	low	to	high	
transition	has	been	received	on	the	external	timer	pin	and	stop	counting	when	the	external	timer	pin	
returns	to	its	original	low	level.	As	before,	the	enable	bit	will	be	automatically	reset	to	zero	and	the	
Timer/Event	Counter	will	stop	counting.	It	is	important	to	note	that	in	the	Pulse	Width	Measurement	
Mode,	the	enable	bit	is	automatically	reset	to	zero	when	the	external	control	signal	on	the	external	
timer	pin	returns	to	its	original	level,	whereas	in	the	other	two	modes	the	enable	bit	can	only	be	reset	
to	zero	under	program	control.

The	residual	value	in	the	Timer/Event	Counter,	which	can	now	be	read	by	the	program,	therefore	
represents	the	length	of	the	pulse	received	on	the	external	timer	pin.	As	the	enable	bit	has	now	been	
reset,	any	further	 transitions	on	the	external	 timer	pin	will	be	ignored.	Not	until	 the	enable	bit	 is	
again	set	high	by	the	program	can	the	timer	begin	further	pulse	width	measurements.	In	this	way,	
single	shot	pulse	measurements	can	be	easily	made.

It	should	be	noted	that	 in	 this	mode	the	Timer/Event	Counter	 is	controlled	by	logical	 transitions	
on	 the	external	 timer	pin	and	not	by	 the	 logic	 level.	When	the	Timer/Event	Counter	 is	 full	and	
overflows,	an	interrupt	signal	is	generated	and	the	Timer/Event	Counter	will	reload	the	value	already	
loaded	into	the	preload	register	and	continue	counting.	The	interrupt	can	be	disabled	by	ensuring	
that	the	Timer/Event	Counter	Interrupt	Enable	bit	in	the	Interrupt	Control	Register,	INTC0,	is	reset	
to	zero.

As	the	external	timer	pin	is	shared	with	an	I/O	pin,	to	ensure	that	the	pin	is	configured	to	operate	as	
a	pulse	width	measurement	pin,	two	things	have	to	happen.	The	first	is	to	ensure	that	the	Operating	
Mode	Select	bits	in	the	Timer	Control	Register	place	the	Timer/Event	Counter	in	the	Pulse	Width	
Measurement	Mode,	the	second	is	to	ensure	that	the	port	control	register	configures	the	pin	as	an	
input.

Rev. 1.00 34 October 27, 2011 Rev. 1.00 35 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

� � � � � � � �� � � � �

� � � � � � � � � � � � � �
� � � � � � � �

�
 	 � � � � � � � 	 �
� � � � � � �
 � � � � � � � � �
 �

� � � � � � � � � � 	 � � � � �

 � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � 	 � � � � � � � � � � �

Pulse Width Capture Mode Timing Chart

I/O Interfacing
The	Timer/Event	Counter,	when	configured	to	run	in	the	event	counter	or	pulse	width	measurement	
mode,	require	 the	use	of	 the	external	TMR0	and	TMR1	pins	for	correct	operation.	As	these	pins	
are	shared	pins	they	must	be	configured	correctly	to	ensure	they	are	setup	for	use	as	Timer/Event	
Counter	inputs	and	not	as	a	normal	I/O	pins.	This	is	implemented	by	ensuring	that	the	mode	select	
bits	 in	 the	Timer/Event	Counter	control	 register,	 select	either	 the	event	counter	or	pulse	width	
measurement	mode.	Additionally	the	Port	Control	Register	bits	for	these	pins	must	be	set	high	to	
ensure	that	the	pin	is	setup	as	an	input.	Any	pull-high	resistor	configuration	option	on	these	pins	will	
remain	valid	even	if	the	pin	is	used	as	a	Timer/Event	Counter	input.

Programming Considerations
When	configured	to	run	 in	 the	 timer	mode,	 the	 internal	system	clock	is	used	as	 the	 timer	clock	
source	and	is	therefore	synchronised	with	the	overall	operation	of	the	microcontroller.	In	this	mode	
when	the	appropriate	timer	register	 is	full,	 the	microcontroller	will	generate	an	internal	 interrupt	
signal	directing	 the	program	flow	to	 the	respective	 internal	 interrupt	vector.	For	 the	pulse	width	
measurement	mode,	the	internal	system	clock	is	also	used	as	the	timer	clock	source	but	the	timer	
will	only	run	when	the	correct	 logic	condition	appears	on	the	external	 timer	input	pin.	As	this	 is	
an	external	event	and	not	synchronised	with	the	internal	timer	clock,	the	microcontroller	will	only	
see	 this	external	event	when	the	next	 timer	clock	pulse	arrives.	As	a	result,	 there	may	be	small	
differences	in	measured	values	requiring	programmers	to	take	this	into	account	during	programming.	
The	same	applies	 if	 the	timer	is	configured	to	be	in	 the	event	counting	mode,	which	again	is	an	
external	event	and	not	synchronised	with	the	internal	system	or	timer	clock.

When	the	Timer/Event	Counter	 is	 read,	or	 if	data	 is	written	 to	 the	preload	register,	 the	clock	 is	
inhibited	to	avoid	errors,	however	as	this	may	result	in	a	counting	error,	this	should	be	taken	into	
account	by	the	programmer.	Care	must	be	taken	to	ensure	that	 the	timers	are	properly	initialised	
before	using	 them	for	 the	 first	 time.	The	associated	 timer	enable	bits	 in	 the	 interrupt	control	
register	must	be	properly	set	otherwise	the	internal	interrupt	associated	with	the	timer	will	remain	
inactive.	The	edge	select	 timer	mode	and	clock	source	control	bits	 in	timer	control	register	must	
also	be	correctly	set	 to	ensure	 the	timer	 is	properly	configured	for	 the	required	application.	It	 is	
also	important	to	ensure	that	an	initial	value	is	first	loaded	into	the	timer	registers	before	the	timer	
is	switched	on;	this	is	because	after	power-on	the	initial	values	of	the	timer	registers	are	unknown.	
After	the	timer	has	been	initialised	the	timer	can	be	turned	on	and	off	by	controlling	the	enable	bit	in	
the	timer	control	register.	Note	that	setting	the	timer	enable	bit	high	to	turn	the	timer	on,	should	only	
be	executed	after	 the	timer	mode	bits	have	been	properly	setup.	Setting	the	timer	enable	bit	high	
together	with	a	mode	bit	modification,	may	lead	to	improper	timer	operation	if	executed	as	a	single	
timer	control	register	byte	write	instruction.

Rev. 1.00 34 October 27, 2011 Rev. 1.00 35 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

When	the	Timer/Event	counter	overflows,	its	corresponding	interrupt	request	flag	in	the	interrupt	
control	register	will	be	set.	If	 the	timer	interrupt	is	enabled	this	will	 in	turn	generate	an	interrupt	
signal.	However	irrespective	of	whether	the	interrupts	are	enabled	or	not,	a	Timer/Event	counter	
overflow	will	also	generate	a	wake-up	signal	 if	 the	device	 is	 in	a	Power-down	condition.	This	
situation	may	occur	if	the	Timer/Event	Counter	is	in	the	Event	Counting	Mode	and	if	the	external	
signal	continues	 to	change	state.	In	such	a	case,	 the	Timer/Event	Counter	will	continue	to	count	
these	external	events	and	if	an	overflow	occurs	the	device	will	be	woken	up	from	its	Power-down	
condition.	To	prevent	such	a	wake-up	from	occurring,	the	timer	interrupt	request	flag	should	first	be	
set	high	before	issuing	the	"HALT"	instruction	to	enter	the	Power	Down	Mode.

Timer Program Example
This	program	example	shows	how	the	Timer/Event	Counter	registers	are	setup,	along	with	how	the	
interrupts	are	enabled	and	managed.	Note	how	the	Timer/Event	Counter	 is	 turned	on,	by	setting	
bit	4	of	the	Timer	Control	Register.	The	Timer/Event	Counter	can	be	turned	off	in	a	similar	way	by	
clearing	the	same	bit.	This	example	program	sets	the	Timer/Event	Counter	to	be	in	the	timer	mode,	
which	uses	the	internal	system	clock	as	the	clock	source.

org 04h ; USB interrupt vector
reti
org 08h ; Timer/Event Counter interrupt vector
jmp tmr0int ; jump here when Timer0 overflows
:
org 20h ; main program
 ;internal Timer/Event Counter 0 interrupt routine
Tmr0int:
:
 ; Timer/Event Counter 0 main program placed here
:
reti
:
:
begin:
 ;setup Timer registers
mov a,09bh ; setup Timer preload value
mov tmr0,a;
mov a,080h ; setup Timer control register
mov tmr0c,a ; timer mode
 ; setup interrupt register
mov a,005h ; enable master interrupt and timer interrupt
mov intc0,a
set tmr0c.4 ; start Timer/Event Counter - note mode bits must be
 ; previously setup

Rev. 1.00 36 October 27, 2011 Rev. 1.00 37 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Interrupts
Interrupts	are	an	 important	part	of	any	microcontroller	system.	When	an	 internal	 function	such	
as	a	Timer/Event	Counter	overflow,	a	USB	interrupt	occur,	or	a	SPI	 interrupt	 takes	place,	 their	
corresponding	 interrupt	will	 enforce	a	 temporary	 suspension	of	 the	main	program	allowing	
the	microcontroller	 to	direct	attention	 to	 their	 respective	needs	while	 the	 internal	 interrupts	are	
controlled	by	the	Timer/Event	Counter	overflow,	USB	interrupt	or	reception	and	the	SPI	one	byte	
reception	or	transmission.	

Interrupt Registers
Overall	interrupt	control,	which	means	interrupt	enabling	and	request	flag	setting,	is	controlled	by	
the	interrupt	control	registers,	INTC0	and	INTC1.	By	controlling	the	appropriate	enable	bits	in	the	
registers	each	individual	 interrupt	can	be	enabled	or	disabled.	Also	when	an	interrupt	occurs,	 the	
corresponding	request	flag	will	be	set	by	the	microcontroller.	The	global	enable	flag	if	cleared	to	
zero	will	disable	all	interrupts.

INTC0 Register

Bit 7 6 5 4 3 2 1 0
Name ― T1F T0F USBF ET1I ET0I EUI EMI
R/W ― R/W R/W R/W R/W R/W R/W R/W
POR ― 0 0 0 0 0 0 0

Bit	7	 Unimplemented,	read	as	“0”
Bit	6	 T1F:	Timer/Event	Counter	1	interrupt	request	flag

0:	inactive
1:	active

Bit	5	 T0F:	Timer/Event	Counter	0	interrupt	request	flag
0:	inactive
1:	active

Bit	4	 USBF:	USB	interrupt	request	flag
0:	inactive
1:	active

Bit	3	 ET1I:	Timer/Event	Counter	1	interrupt	enable
0:	disable
1:	enable

Bit	2	 ET0I:	Timer/Event	Counter	0	interrupt	enable
0:	disable
1:	enable

Bit	1	 EUI:	USB	interrupt	enable
0:	disable
1:	enable

Bit	0	 EMI:	Master	interrupt	global	enable
0:	disable
1:	enable

Rev. 1.00 36 October 27, 2011 Rev. 1.00 37 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

INTC1 Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― SIF ― ― ― ESII
R/W ― ― ― R/W ― ― ― R/W
POR ― ― ― 0 ― ― ― 0

Bit	7~5	 Unimplemented,	read	as	“0”
Bit	4	 SIF:	SPI	interrupt	request	flag

0:	inactive
1:	active

Bit	3~1	 Unimplemented,	read	as	“0”
Bit	0	 ESII:	SPI	interrupt	enable	

0:	disable
1:	enable

Interrupt Operation
When	a	USB	interrupt	occurs,	a	SPI	 insterrupt	 takes	place,	or	one	of	 the	Timer/Event	Counters	
overflow,	 if	 their	appropriate	 interrupt	enable	bit	 is	set,	 the	Program	Counter,	which	stores	 the	
address	of	 the	next	 instruction	 to	be	executed,	will	be	 transferred	onto	 the	stack.	The	Program	
Counter	will	 then	be	 loaded	with	a	new	address	which	will	be	 the	value	of	 the	corresponding	
interrupt	vector.	The	microcontroller	will	 then	fetch	its	next	instruction	from	this	interrupt	vector.	
The	instruction	at	 this	vector	will	usually	be	a	JMP	statement	which	will	 jump	to	another	section	
of	program	which	is	known	as	the	interrupt	service	routine.	Here	is	located	the	code	to	control	the	
appropriate	interrupt.	The	interrupt	service	routine	must	be	terminated	with	a	RETI	statement,	which	
retrieves	 the	original	Program	Counter	address	from	the	stack	and	allows	the	microcontroller	 to	
continue	with	normal	execution	at	the	point	where	the	interrupt	occurred.

The	various	 interrupt	enable	bits,	 together	with	 their	associated	request	 flags,	are	shown	in	 the	
accompanying	diagram	with	their	order	of	priority.

Once	an	interrupt	subroutine	is	serviced,	all	the	other	interrupts	will	be	blocked,	as	the	EMI	bit	will	
be	cleared	automatically.	This	will	prevent	any	further	interrupt	nesting	from	occurring.	However,	
if	other	interrupt	requests	occur	during	this	interval,	although	the	interrupt	will	not	be	immediately	
serviced,	the	request	flag	will	still	be	recorded.	If	an	interrupt	requires	immediate	servicing	while	the	
program	is	already	in	another	interrupt	service	routine,	the	EMI	bit	should	be	set	after	entering	the	
routine,	to	allow	interrupt	nesting.	If	the	stack	is	full,	the	interrupt	request	will	not	be	acknowledged,	
even	if	the	related	interrupt	is	enabled,	until	the	Stack	Pointer	is	decremented.	If	immediate	service	
is	desired,	the	stack	must	be	prevented	from	becoming	full.

�
�
 � 	 � � �

� � � � � � � � � � � � �
 � � � � � � � � � � � � � � � �

� � �
� � � � � � � �

� � � � � � � � �
� � � � � � �

� � � �

�
� �

� � � � � � � � � � � � � � � � � � � � � � �
 � � 	
� � � � � � � � � � � � � � � � � � � � � � � �

� � �

� � 	

� � � � � � � � � � � � � � � � � � � � � � � �
 � � 	
� � � � � � � � � � � � � � � � � � � � � � � � �

� � � �

� � �

� � � � � � � � � � � � � �
 � � � � � � � � � � � � � � �

� � � �

Interrupt Structure

Rev. 1.00 38 October 27, 2011 Rev. 1.00 39 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Interrupt Priority
Interrupts,	occurring	in	the	interval	between	the	rising	edges	of	two	consecutive	T2	pulses,	will	be	
serviced	on	the	latter	of	the	two	T2	pulses,	if	the	corresponding	interrupts	are	enabled.		In	case	of	
simultaneous	requests,	the	following	table	shows	the	priority	that	is	applied.	These	can	be	masked	
by	resetting	the	EMI	bit.

Interrupt Source Priority Vector
USB Interrupt 1 0004H
Timer/Event Counter 0 Overflow Interrupt 2 0008H
Timer/Event Counter 1 Overflow Interrupt 3 000CH
SPI Interrupt 4 0010H

In	cases	where	both	external	and	internal	interrupts	are	enabled	and	where	an	external	and	internal	
interrupt	occurs	simultaneously,	the	external	interrupt	will	always	have	priority	and	will	therefore	be	
serviced	first.	Suitable	masking	of	the	individual	interrupts	using	the	interrupt	registers	can	prevent	
simultaneous	occurrences.

Timer/Event Counter Interrupt
For	 a	Timer/Event	Counter	 interrupt	 to	occur,	 the	global	 interrupt	 enable	bit,	EMI,	 and	 the	
corresponding	 timer	 interrupt	enable	bit,	ET0I/ET1I,	must	 first	be	set.	An	actual	Timer/Event	
Counter	 interrupt	will	 take	place	when	the	Timer/Event	Counter	 interrupt	request	flag,	T0F/T1F,	
is	set,	a	situation	that	will	occur	when	the	Timer/Event	Counter	overflows.	When	the	interrupt	 is	
enabled,	the	stack	is	not	full	and	a	Timer/Event	Counter	overflow	occurs,	a	subroutine	call	 to	the	
timer	interrupt	vector	at	location	08H/0CH,	will	take	place.	When	the	interrupt	is	serviced,	the	timer	
interrupt	request	flag,	T0F/T1F,	will	be	automatically	reset	and	the	EMI	bit	will	be	automatically	
cleared	to	disable	other	interrupts.

Programming Considerations
By	disabling	the	interrupt	enable	bits,	a	requested	interrupt	can	be	prevented	from	being	serviced,	
however,	once	an	interrupt	request	flag	is	set,	it	will	remain	in	this	condition	in	the	interrupt	control	
register	until	the	corresponding	interrupt	is	serviced	or	until	the	request	flag	is	cleared	by	a	software	
instruction.

It	is	recommended	that	programs	do	not	use	the	"CALL	subroutine"	instruction	within	the	interrupt	
subroutine.	Interrupts	often	occur	in	an	unpredictable	manner	or	need	to	be	serviced	immediately	
in	some	applications.	If	only	one	stack	is	left	and	the	interrupt	is	not	well	controlled,	the	original	
control	sequence	will	be	damaged	once	a	"CALL	subroutine"	is	executed	in	the	interrupt	subroutine.

All	of	 these	interrupts	have	the	capability	of	waking	up	the	processor	when	in	 the	Power	Down	
Mode.

Only	the	Program	Counter	 is	pushed	onto	the	stack.	If	 the	contents	of	 the	accumulator	or	status	
register	are	altered	by	 the	 interrupt	 service	program,	which	may	corrupt	 the	desired	control	
sequence,	then	the	contents	should	be	saved	in	advance.

Rev. 1.00 38 October 27, 2011 Rev. 1.00 39 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

USB Interrupt
The	USB	interrupts	are	triggered	by	the	following	USB	events	causing	the	related	interrupt	request	
flag,	USBF,	to	be	set.

•	 Access	of	the	corresponding	USB	FIFO	from	PC

•	 A	USB	suspend	signal	from	the	PC

•	 A	USB	resume	signal	from	the	PC

•	 A	USB	Reset	signal

When	the	interrupt	 is	enabled,	 the	stack	is	not	full	and	the	USB	interrupt	 is	active,	a	subroutine	
call	to	location	04H	will	occur.	The	interrupt	request	flag,	USBF,	and	the	EMI	bit	will	be	cleared	to	
disable	other	interrupts.

When	the	PC	Host	accesses	the	FIFO	of	the	device,	the	corresponding	request	bit,	USR,	is	set,	and	
a	USB	interrupt	is	triggered.	So	the	user	can	easy	determine	which	FIFO	has	been	accessed.	When	
the	interrupt	has	been	served,	the	corresponding	bit	should	be	cleared	by	firmware.	When	the	device	
receive	a	USB	Suspend	signal	from	Host	PC,	 the	suspend	line	(bit	0	of	USC)	is	set	and	a	USB	
interrupt	is	also	triggered.

Also	when	device	receive	a	Resume	signal	from	Host	PC,	the	resume	line	(bit	3	of	USC)	is	set	and	a	
USB	interrupt	is	triggered.

Serial Interface Interrupt
The	Serial	Interface	Interrupt,	also	known	as	the	SPI	interrupt.	A	SPI	Interrupt	request	will	take	place	
when	the	SPI	Interrupt	request	flag,	SIF,	is	set,	which	occurs	when	a	byte	of	data	has	been	received	
or	transmitted	by	the	SPI	interface.	To	allow	the	program	to	branch	to	its	respective	interrupt	vector	
address,	the	global	interrupt	enable	bit,	EMI,	and	the	Serial	Interface	Interrupt	enable	bit,	ESII,	must	
first	be	set.	When	the	interrupt	is	enabled,	the	stack	is	not	full	and	a	byte	of	data	has	been	transmitted	
or	received	by	the	SPI	interface,	a	subroutine	call	to	the	respective	Interrupt	vector,	will	take	place.	
When	the	Serial	Interface	Interrupt	is	serviced,	the	EMI	bit	will	be	automatically	cleared	to	disable	
other	interrupts,	and	the	interrupt	request	flag,	SIF,	will	be	also	automatically	cleared.	

Reset and Initialisation
A	reset	function	is	a	fundamental	part	of	any	microcontroller	ensuring	that	 the	device	can	be	set	
to	some	predetermined	condition	 irrespective	of	outside	parameters.	The	most	 important	 reset	
condition	is	after	power	is	first	applied	to	the	microcontroller.	In	this	case,	 internal	circuitry	will	
ensure	 that	 the	microcontroller,	after	a	short	delay,	will	be	 in	a	well	defined	state	and	ready	 to	
execute	the	first	program	instruction.	After	this	power-on	reset,	certain	important	internal	registers	
will	be	set	to	defined	states	before	the	program	commences.	One	of	these	registers	is	the	Program	
Counter,	which	will	be	reset	to	zero	forcing	the	microcontroller	to	begin	program	execution	from	the	
lowest	Program	Memory	address.

In	addition	 to	 the	power-on	reset,	situations	may	arise	where	 it	 is	necessary	 to	forcefully	apply	
a	reset	condition	when	the	microcontroller	 is	running.	One	example	of	 this	 is	where	after	power	
has	been	applied	and	the	microcontroller	is	already	running,	the	RES	line	is	forcefully	pulled	low.	
In	such	a	case,	known	as	a	normal	operation	reset,	some	of	 the	microcontroller	registers	remain	
unchanged	allowing	 the	microcontroller	 to	proceed	with	normal	operation	after	 the	reset	 line	 is	
allowed	to	return	high.	Another	type	of	reset	is	when	the	Watchdog	Timer	overflows	and	resets	the	
microcontroller.	All	types	of	reset	operations	result	in	different	register	conditions	being	setup.

Another	reset	exists	in	the	form	of	a	Low	Voltage	Reset,	LVR,	where	a	full	reset,	similar	to	the	RES	
reset	is	implemented	in	situations	where	the	power	supply	voltage	falls	below	a	certain	threshold.

Rev. 1.00 40 October 27, 2011 Rev. 1.00 41 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Reset Functions
There	are	 five	ways	 in	which	a	microcontroller	 reset	can	occur,	 through	events	occurring	both	
internally	and	externally:

•	 Power-on	Reset
The	most	fundamental	and	unavoidable	reset	is	the	one	that	occurs	after	power	is	first	applied	to	
the	microcontroller.	As	well	as	ensuring	that	the	Program	Memory	begins	execution	from	the	first	
memory	address,	a	power-on	reset	also	ensures	that	certain	other	registers	are	preset	 to	known	
conditions.	All	the	I/O	port	and	port	control	registers	will	power	up	in	a	high	condition	ensuring	
that	all	pins	will	be	first	set	to	inputs.
Although	the	microcontroller	has	an	internal	RC	reset	function,	if	the	VDD	power	supply	rise	time	
is	not	fast	enough	or	does	not	stabilise	quickly	at	power-on,	 the	internal	reset	function	may	be	
incapable	of	providing	a	proper	reset	operation.	In	such	cases	it	is	recommended	that	an	external	
RC	network	is	connected	to	the	RES	pin,	whose	additional	time	delay	will	ensure	that	the	RES	
pin	remains	low	for	an	extended	period	to	allow	the	power	supply	to	stabilise.	During	this	time	
delay,	normal	operation	of	 the	microcontroller	will	be	 inhibited.	After	 the	RES	line	reaches	a	
certain	voltage	value,	 the	reset	delay	time	tRSTD	is	 invoked	to	provide	an	extra	delay	time	after	
which	the	microcontroller	will	begin	normal	operation.	The	abbreviation	SST	in	the	figures	stands	
for	System	Start-up	Timer.

� � �

� � �

� � � � � � � � � � � �

� � � � � � � � � � � � �

�
 	 � � � �

� � � � �

Power-On Reset Timing Chart

•	 RES	Pin	Reset
For	most	applications	a	 resistor	connected	between	VDD	and	 the	RES	pin	and	a	capacitor	
connected	between	VSS	and	 the	RES	pin	will	provide	a	suitable	external	 reset	circuit.	Any	
wiring	connected	to	the	RES	pin	should	be	kept	as	short	as	possible	to	minimise	any	stray	noise	
interference.

� � �

� � �

� � �
� � � � �

� � � � �

Basic Reset Circuit
For	applications	that	operate	within	an	environment	where	more	noise	is	present	 the	Enhanced	
Reset	Circuit	shown	is	recommended.

� � �

� � � � �

� � � � �
� � �

� � �

� � � � � �

� � � �

Enhanced Reset Circuit

Rev. 1.00 40 October 27, 2011 Rev. 1.00 41 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

More	information	regarding	external	reset	circuits	is	located	in	Application	Note	HA0075E	on	the	
Holtek	website.
This	 type	of	 reset	occurs	when	 the	microcontroller	 is	 already	 running	and	 the	RES	pin	 is	
forcefully	pulled	low	by	external	hardware	such	as	an	external	switch.	In	this	case	as	in	the	case	
of	other	reset,	 the	Program	Counter	will	reset	to	zero	and	program	execution	initiated	from	this	
point.	Note	that	as	the	external	reset	pin	is	also	pin-shared	with	PE2	if	it	is	to	be	used	as	a	reset	
pin,	the	correct	reset	configuration	option	must	be	selected.

� � �

� � � � � � � � � � � �

� � � � � � � � � � � � � �

 � � �
 	 	
 � � �
 	 	

� � � � 	

RES Reset Timing Chart

•	 Low	Voltage	Reset	–	LVR
The	microcontroller	contains	a	low	voltage	reset	circuit	in	order	to	monitor	the	supply	voltage	of	
the	device.	The	LVR	function	is	selected	via	a	configuration	option.	If	the	supply	voltage	of	the	
device	drops	to	within	a	range	of	0.9V~VLVR	such	as	might	occur	when	changing	the	battery,	the	
LVR	will	automatically	reset	the	device	internally.	For	a	valid	LVR	signal,	a	low	supply	voltage,	
i.e.,	a	voltage	in	the	range	between	0.9V~VLVR	must	exist	for	a	time	greater	than	that	specified	by	
tLVR	in	the	A.C.	characteristics.	If	the	low	supply	voltage	state	does	not	exceed	this	value,	the	LVR	
will	 ignore	the	low	supply	voltage	and	will	not	perform	a	reset	function.	The	actual	VLVR	value	
can	be	selected	via	configuration	options.

� � �

� � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � �

Low Voltage Reset Timing Chart

•	 Watchdog	Time-out	Reset	during	Normal	Operation
The	Watchdog	time-out	Reset	during	normal	operation	is	the	same	as	a	hardware	RES	pin	reset	
except	that	the	Watchdog	time-out	flag	TO	will	be	set	to	"1".

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � �

WDT Time-out Reset during Normal Operation Timing Chart

•	 Watchdog	Time-out	Reset	during	Power	Down
The	Watchdog	time-out	Reset	during	Power	Down	is	a	little	different	from	other	kinds	of	reset.	
Most	of	the	conditions	remain	unchanged	except	that	the	Program	Counter	and	the	Stack	Pointer	
will	be	cleared	to	"0"	and	the	TO	flag	will	be	set	to	"1".	Refer	to	the	A.C.	Characteristics	for	tSST	
details.

� � � � � � � � � � � �

� � � � � � � � � � � �
� � � �

WDT Time-out Reset during Power Down Timing Char

Rev. 1.00 42 October 27, 2011 Rev. 1.00 43 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Reset Initial Conditions
The	different	 types	of	reset	described	affect	 the	reset	flags	in	different	ways.	These	flags,	known	
as	PDF	and	TO	are	 located	 in	 the	status	 register	and	are	controlled	by	various	microcontroller	
operations,	such	as	the	Power	Down	function	or	Watchdog	Timer.	The	reset	flags	are	shown	in	the	
table:

TO PDF RESET Conditions
0 0 RES reset during power-on
0 0 RES wake-up during Power Down
0 0 RES or LVR reset during normal operation
1 u WDT time-out reset during normal operation
1 1 WDT time-out reset during Power Down

Note:	"u"	stands	for	unchanged

The	following	table	indicates	the	way	in	which	the	various	components	of	the	microcontroller	are	
affected	after	a	power-on	reset	occurs.

Item Condition After RESET
Program Counter Reset to zero
Interrupts All interrupts will be disabled
WDT Clear after reset, WDT begins counting
Timer/Event Counter Timer Counter will be turned off
Prescaler The Timer Counter Prescaler will be cleared
Input/Output Ports I/O ports will be setup as inputs
Stack Pointer Stack Pointer will point to the top of the stack

The	different	kinds	of	resets	all	affect	the	internal	registers	of	the	microcontroller	in	different	ways.	
To	ensure	reliable	continuation	of	normal	program	execution	after	a	reset	occurs,	it	is	important	to	
know	what	condition	the	microcontroller	is	 in	after	a	particular	reset	occurs.	The	following	table	
describes	how	each	type	of	reset	affects	the	microcontroller	internal	registers.

Rev. 1.00 42 October 27, 2011 Rev. 1.00 43 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Register Reset
(Power On)

WDT Time-
out (Normal
Operation)

RES Reset
(Normal

Operation)

RES Reset
(HALT)

WDT Time-
Out (HALT)*

USB-Reset
(Normal)

USB-Reset
(HALT)

TMR0 xxxx xxxx 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu
TMR0C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u--- 00-0 1--- 00-0 1---
TMR1H xxxx xxxx 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu
TMR1L xxxx xxxx 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu
TMR1C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u--- 00-0 1--- 00-0 1---
Program Counter 0000H 0000H 0000H 0000H 0000H 0000H 0000H
MP0 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu
MP1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu
ACC xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu
TBLP xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu
TBHP --- - xxxx ---- uuuu ---- uuuu ---- uuuu ---- uuuu ---- uuuu ---- uuuu
TBLH -xxx xxxx -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu
STATUS --00 xxxx --1u uuuu --00 uuuu --00 uuuu --11 uuuu --uu uuuu --01 uuuu
INTC0 -000 0000 -000 0000 -000 0000 -000 0000 -uuu uuuu -000 0000 -000 0000
INTC1 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - u - - - u - - - 0 - - - 0 - - - 0 - - - 0
WDTS 1000 0111 1000 0111 1000 0111 1000 0111 uuuu uuuu 1000 0111 1000 0111
PA 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111
PAC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111
PB - - - - 1111 -- - - 1111 -- - - 1111 -- - - 1111 ---- uuuu -- - - 1111 -- - - 1111
PBC - - - - 1111 -- - - 1111 -- - - 1111 -- - - 1111 ---- uuuu -- - - 1111 -- - - 1111
PE - - - - -111 - - - - -111 - - - - -111 - - - - -111 -- - - -uuu - - - - -111 - - - - -111
PEC - - - - -111 - - - - -111 - - - - -111 - - - - -111 -- - - -uuu - - - - -111 - - - - -111
USB_STAT ---x xxxx ---u uuuu ---x xxxx ---x xxxx ---u uuuu ---x xxxx ---x xxxx
PIPE_CTRL 0000 0110 uuuu uuuu 0000 0110 0000 0110 uuuu uuuu 0000 0110 0000 0110
AWR 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000
PIPE 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000
STALL 0000 0110 uuuu uuuu 0000 0110 0000 0110 uuuu uuuu 0000 0110 0000 0110
SIES 0x0x x000 uuuu uuuu 0x0x x000 0x0x x000 uuuu uuuu 0x0x x000 0x0x x000
MISC 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000
Endpt_EN 0000 0111 uuuu uuuu 0000 0111 0000 0111 uuuu uuuu 0000 0111 0000 0111
FIFO0 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000
FIFO1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000
FIFO2 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000
USC 11xx 0000 uuxx uuuu 11xx 0000 11xx 0000 uuxx uuuu uu00 0u00 uu00 0u00
USR 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu u1uu 0000 u1uu 0000
SCC 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0uu0 u000 0uu0 u000
SPIR ---- 0000 ---- 0000 ---- 0000 ---- 0000 ---- uuuu ---- 0000 ---- 0000
SBCR 0110 0000 0110 0000 0110 0000 0110 0000 uuuu uuuu 0110 0000 0110 0000
SBDR xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu xxxx xxxx xxxx xxxx

Note:	"*"	means	"warm	reset"
"-"	not	implemented
"u"	means	"unchanged"
"x"	means	"unknown"

Rev. 1.00 44 October 27, 2011 Rev. 1.00 45 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Oscillator
The	clock	source	for	 these	devices	 is	provided	by	an	 integrated	oscillator	requiring	no	external	
components.	This	oscillator	has	two	fixed	frequencies	of	either	6MHz	or	12MHz,	the	selection	of	
which	is	made	by	the	SYSCLK	bit	in	the	SCC	register.

Watchdog Timer Oscillator
The	WDT	oscillator	is	a	fully	self-contained	free	running	on-chip	RC	oscillator	with	a	typical	period	
of	32μs	at	5V	requiring	no	external	components.	When	the	device	enters	the	Power	Down	Mode,	
the	system	clock	will	stop	running	but	 the	WDT	oscillator	continues	to	free-run	and	to	keep	the	
watchdog	active.	However,	 to	preserve	power	 in	certain	applications	 the	WDT	oscillator	can	be	
disabled	via	a	configuration	option.

Power Down Mode and Wake-up

Power Down Mode
All	of	the	Holtek	microcontrollers	have	the	ability	to	enter	a	Power	Down	Mode.	When	the	device	
enters	this	mode,	the	normal	operating	current,	will	be	reduced	to	an	extremely	low	standby	current	
level.	This	occurs	because	when	the	device	enters	 the	Power	Down	Mode,	 the	system	oscillator	
is	stopped	which	reduces	the	power	consumption	to	extremely	low	levels,	however,	as	the	device	
maintains	its	present	internal	condition,	it	can	be	woken	up	at	a	later	stage	and	continue	running,	
without	requiring	a	full	 reset.	This	feature	 is	extremely	important	 in	application	areas	where	 the	
microcontroller	must	have	its	power	supply	constantly	maintained	to	keep	the	device	in	a	known	
condition	but	where	the	power	supply	capacity	is	limited	such	as	in	battery	applications.

Entering the Power Down Mode
There	 is	only	one	way	for	 the	device	 to	enter	 the	Power	Down	Mode	and	that	 is	 to	execute	 the	
"HALT"	instruction	in	the	application	program.	When	this	instruction	is	executed,	the	following	will	
occur:

•	 The	system	oscillator	will	stop	running	and	the	application	program	will	stop	at	 the	"HALT"	
instruction.

•	 The	Data	Memory	contents	and	registers	will	maintain	their	present	condition.

•	 The	WDT	will	be	cleared	and	resume	counting	if	the	WDT	clock	source	is	selected	to	come	from	
the	WDT	or	RTC	oscillator.	The	WDT	will	stop	if	 its	clock	source	originates	from	the	system	
clock.

•	 The	I/O	ports	will	maintain	their	present	condition.

•	 In	the	status	register,	the	Power	Down	flag,	PDF,	will	be	set	and	the	Watchdog	time-out	flag,	TO,	
will	be	cleared.

Rev. 1.00 44 October 27, 2011 Rev. 1.00 45 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Standby Current Considerations
As	the	main	reason	for	entering	the	Power	Down	Mode	is	to	keep	the	current	consumption	of	the	
microcontroller	to	as	low	a	value	as	possible,	perhaps	only	in	the	order	of	several	micro-amps,	there	
are	other	considerations	which	must	also	be	taken	into	account	by	the	circuit	designer	if	the	power	
consumption	is	to	be	minimised.

Special	attention	must	be	made	to	the	I/O	pins	on	the	device.	All	high-impedance	input	pins	must	
be	connected	 to	either	a	fixed	high	or	 low	level	as	any	floating	 input	pins	could	create	 internal	
oscillations	and	result	 in	 increased	current	consumption.	Care	must	also	be	taken	with	the	loads,	
which	are	connected	to	I/O	pins,	which	are	setup	as	outputs.	These	should	be	placed	in	a	condition	
in	which	minimum	current	is	drawn	or	connected	only	to	external	circuits	that	do	not	draw	current,	
such	as	other	CMOS	inputs.

If	 the	configuration	options	have	enabled	 the	Watchdog	Timer	 internal	oscillator	 then	 this	will	
continue	to	run	when	in	 the	Power	Down	Mode	and	will	 thus	consume	some	power.	For	power	
sensitive	applications	it	may	be	therefore	preferable	to	use	the	system	clock	source	for	the	Watchdog	
Timer.

Wake-up
After	the	system	enters	the	Power	Down	Mode,	it	can	be	woken	up	from	one	of	various	sources	
listed	as	follows:

•	 An	external	reset

•	 An	external	falling	edge	Wake-up

•	 A	system	interrupt

•	 A	WDT	overflow

If	 the	system	is	woken	up	by	an	external	 reset,	 the	device	will	experience	a	 full	 system	reset,	
however,	if	the	device	is	woken	up	by	a	WDT	overflow,	a	Watchdog	Timer	reset	will	be	initiated.	
Although	both	of	 these	wake-up	methods	will	 initiate	a	reset	operation,	 the	actual	source	of	 the	
wake-up	can	be	determined	by	examining	the	TO	and	PDF	flags.	The	PDF	flag	 is	cleared	by	a	
system	power-up	or	executing	the	clear	Watchdog	Timer	instructions	and	is	set	when	executing	the	
"HALT"	instruction.	The	TO	flag	is	set	if	a	WDT	time-out	occurs,	and	causes	a	wake-up	that	only	
resets	the	Program	Counter	and	Stack	Pointer,	the	other	flags	remain	in	their	original	status.

Each	pin	can	be	setup	via	an	individual	configuration	option	to	permit	a	negative	transition	on	the	
pin	to	wake-up	the	system.	When	a	pin	wake-up	occurs,	the	program	will	resume	execution	at	the	
instruction	following	the	"HALT"	instruction.

If	the	system	is	woken	up	by	an	interrupt,	then	two	possible	situations	may	occur.	The	first	is	where	
the	related	interrupt	 is	disabled	or	 the	interrupt	 is	enabled	but	 the	stack	is	full,	 in	which	case	the	
program	will	resume	execution	at	the	instruction	following	the	"HALT"	instruction.	In	this	situation,	
the	interrupt	which	woke-up	the	device	will	not	be	immediately	serviced,	but	will	rather	be	serviced	
later	when	the	related	 interrupt	 is	finally	enabled	or	when	a	stack	level	becomes	free.	The	other	
situation	is	where	the	related	interrupt	is	enabled	and	the	stack	is	not	full,	in	which	case	the	regular	
interrupt	response	takes	place.	If	an	interrupt	request	flag	is	set	 to	"1"	before	entering	the	Power	
Down	Mode,	the	wake-up	function	of	the	related	interrupt	will	be	disabled.

No	matter	what	the	source	of	the	wake-up	event	is,	once	a	wake-up	situation	occurs,	a	time	period	
equal	 to	1024	system	clock	periods	will	be	 required	before	normal	system	operation	 resumes.	
However,	if	the	wake-up	has	originated	due	to	an	interrupt,	the	actual	interrupt	subroutine	execution	
will	be	delayed	by	an	additional	one	or	more	cycles.	If	the	wake-up	results	in	the	execution	of	the	
next	instruction	following	the	"HALT"	instruction,	this	will	be	executed	immediately	after	the	1024	
system	clock	period	delay	has	ended.

Rev. 1.00 46 October 27, 2011 Rev. 1.00 47 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Watchdog Timer
The	WDT	clock	source	is	implemented	by	a	dedicated	RC	oscillator	(WDT	oscillator)	or	instruction	
clock	(system	clock	divided	by	4),	enabled	using	a	configuration	option.	This	timer	is	designed	to	
prevent	a	software	malfunction	or	sequence	jumping	to	an	unknown	location	with	unpredictable	
results.	 If	 the	Watchdog	Timer	 is	disabled,	all	 the	executions	 related	 to	 the	WDT	results	 in	no	
operation.

Once	the	internal	WDT	oscillator	(RC	oscillator	normally	with	a	period	of	32μs)	is	selected,	it	is	first	
divided	by	256	(8-stages)	to	get	the	nominal	time-out	period	of	approximately	8.19ms.	This	time-out	
period	may	vary	with	temperature,	VDD	and	process	variations.	By	using	the	WDT	prescaler,	longer	
time-out	periods	can	be	realized.	Writing	data	to	WS2,	WS1,	WS0	(bit	2,	1,	0	of	the	WDTS)	can	
give	different	time-out	periods.	If	WS2,	WS1,	WS0	are	all	equal	to	"1",	the	division	ratio	is	up	to	
1:128,	and	the	maximum	time-out	period	is	1.048s.

If	the	WDT	oscillator	is	disabled,	the	WDT	clock	source	may	still	come	from	the	instruction	clock	
and	operate	 in	 the	same	manner	except	 that	 in	 the	Power	down	Mode	state	 the	WDT	may	stop	
counting	and	lose	its	protecting	purpose.	In	this	situation	the	WDT	logic	can	be	restarted	by	external	
logic.	The	high	nibble	and	bit	3	of	the	WDTS	are	reserved	for	user	defined	flags,	which	can	be	used	
to	indicate	some	specified	status.

If	 the	device	operates	 in	a	noisy	environment,	using	 the	on-chip	RC	oscillator	 (WDT	OSC)	 is	
strongly	recommended,	since	the	HALT	will	stop	the	system	clock.

� � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
 	 � �

� � � � � � � � � �

� � � � � � � � � � � �

� � � � � � �
� � � � � 	 � � � � � � � � � �

� 	 �
 � � � � � � � � � �
� � � � � �
 � � � � � � � � � � �

� � � � � � � � � � 	

� � � � � � � � � � 	

� � � � � � � � � � � � � � � � � � �
� � � �

� � � �
 � � � � �

� � � � � � � � 	 	
 � � �
� � � � � 	 � � � � � � � � � �
� � � � � �
 � � � � � � � � � � �

Watchdog Timer

WDTS Register

Bit 7 6 5 4 3 2 1 0
Name WS7 ― ― ― WS3 WS2 WS1 WS0
R/W R/W ― ― ― R/W R/W R/W R/W
POR 1 0 0 0 0 1 1 1

Bit	7	 WS7:	USB	reset	enable	control	bit
Described	elsewhere

Bit	6~4	 Unimplemented,	read	as	“0”
Bit	3	 WS3:	D+,	and	D-	have	a	300K	±	50%	ohm	pull-high	control	bit

Described	elsewhere
Bit	2~0	 WS2,	WS1,	WS0:	WDT	Time-out	period	selection

000:		1:1
001:		1:2
010:		1:4
011:		1:8
100:		1:16
101:		1:32
110:		1:64
111:		1:128

Rev. 1.00 46 October 27, 2011 Rev. 1.00 47 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

USB Interface

Suspend Wake-Up and Remote Wake-Up
If	 there	 is	no	signal	on	the	USB	bus	for	over	3ms,	 the	device	will	go	into	a	suspend	mode.	The	
Suspend	line	(bit	0	of	the	USC	register)	will	be	set	to	"1"	and	a	USB	interrupt	is	triggered	to	indicate	
that	the	devices		should	jump	to	the	suspend	state	to	meet	the	500μA	USB	suspend	current	spec.

In	order	to	meet	the	500μA	suspend	current,	the	firmware	should	disable	the	USB	clock	by	clearing	
the	USBCKEN	bit	which	is	bit	3	of	the	SCC	register	to	"0".	The	suspend	current	is	400μA.

The	user	can	further	decrease	the	suspend	current	to	250μA	by	setting	the	SUSP2	bit	which	is	bit	4	
of	the	SCC	register.	If	in	the	USB	mode	set	this	bit	LVR	OPT	must	disable.

When	the	resume	signal	 is	sent	out	by	the	host,	 the	devices	will	wake	up	the	MCU	with	a	USB	
interrupt	and	the	Resume	line	(bit	3	of	the	USC	register)	is	set.	In	order	to	make	the	device	function	
properly,	 the	firmware	must	set	 the	USBCKEN	(bit	3	of	 the	SCC	register)	 to	"1"	and	clear	 the	
SUSP2	(bit	4	of	the	SCC	register).	Since	the	Resume	signal	will	be	cleared	before	the	Idle	signal	
is	sent	out	by	the	host,	the	Suspend	line	(bit	0	of	the	USC	register)	will	be	set	to	"0".	So	when	the	
MCU	is	detecting	the	Suspend	line	(bit	0	of	USC	register),	 the	Resume	line	condition	should	be	
noted	and	taken	into	consideration.

After	finishing	the	resume	signal,	 the	suspend	line	will	go	 inactive	and	a	USB	interrupt	will	be	
triggered.	The	following	is	the	timing	diagram.

� � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � �

As	the	device	has	a	remote	wake	up	function	it	can	wake-up	the	USB	Host	by	sending	a	wake-up	
pulse	 through	RMOT_WK	(bit	1	of	 the	USC	register).	Once	 the	USB	Host	 receives	a	wake-up	
signal	from	the	devices,	it	will	send	a	Resume	signal	to	the	device.	The	timing	is	as	follows:

� � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � �

�
 	 � � �

 � � � � �
� � � � � � �

 � � � � � � � � �

Rev. 1.00 48 October 27, 2011 Rev. 1.00 49 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

To Configure as PS2 Device
The	devices	can	also	be	configured	as	a	USB	interface	or	PS2	interface	device,	by	configuring	
MODE_CTRL0	(bit	4	of	 the	USR	register)	and	MODE_CTRL1	(bit	5	of	 the	USR	register).	 If	
MODE_CTRL0=1,	and	MODE_CTRL1=0,	 the	device	will	be	configured	as	a	PS2	interface,	pin	
UDN	is	configured	as	a	PS2	Data	pin	and	UDP	is	configured	as	a	PS2	Clk	pin.	The	user	can	read	or	
write	to	the	PS2	Data	or	PS2	Clk	pin	by	accessing	the	corresponding	bit	PS2_DAI	(bit	4	of	the	USC	
register),	PS2_CKI	(bit	5	of	the	USC	register),	PS2_DAO	(bit	6	of	the	USC	register)	and	PS2_CKO	
(bit	7	of	the	USC	register)	respectively.

The	user	should	make	sure	that	in	order	to	read	the	data	properly,	the	corresponding	output	bit	must	
be	set	to	“1”.	For	example,	if	it	is	desired	to	read	the	PS2	Data	by	reading	PS2_DAI,	then	PS2_DAO	
should	set	to	“1”.	Otherwise	it	is	always	read	as	“0”.

If	MODE_CTRL0=0,	and	MODE_CTRL1=1,	the	device	is	configured	as	a	USB	interface.	Both	the	
UDN	and	UDP	are	driven	by	the	SIE	of	the	devices.	The	user	can	only	write	or	read	the	USB	data	
through	the	corresponding	FIFO.	Both	the	MODE_CTRL0	and	MODE_CTRL1	default	is	“0”.

USB Control Registers
There	are	twelve	registers	used	for	the	USB	function.	The	AWR	register	contains	the	current	address	
and	a	remote	wake	up	function	control	bit.	The	initial	value	of	AWR	is	"00H".	The	address	value	
extracted	from	the	USB	command	is	not	 to	be	loaded	into	this	register	until	 the	SETUP	stage	is	
completed.

AWR Register

Bit 7 6 5 4 3 2 1 0
Name AD6 AD5 AD4 AD3 AD2 AD1 AD0 WKEN
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit	7~1	 AD6~AD0:	USB	device	address
Bit	0	 WKEN:	USB	remote-wake-up	control	bit

0:	disable
1:	enable

The	AWR	register	contains	the	current	address	and	a	remote	wake	up	function	control	bit.	The	initial	
value	of	AWR	is	“00H”.	The	address	value	extracted	from	the	USB	command	has	not	to	be	loaded	
into	this	register	until	the	SETUP	stage	has	finished.

WDTS Register

Bit 7 6 5 4 3 2 1 0
Name WS7 ― ― ― WS3 WS2 WS1 WS0
R/W R/W ― ― ― R/W R/W R/W R/W
POR 1 0 0 0 0 1 1 1

Bit	7	 WS7:	USB	reset	enable	control	bit
0:	USB	reset	signal	cannot	reset	MCU
1:	USB	reset	signal	can	reset	MCU	and	set	URST_FLAG	(bit	2	of	the	USC	register)	
(default	on	at	MCU	reset)

Bit	6~4	 unimplemented,	read	as	“0”
Bit	3	 WS3:	D+,	and	D-	have	a	300K	±	50%	ohm	pull-high	control	bit

0:	Non-pull-high	(Default)
1:	Pull-high

Bit	2~0	 WS2,	WS1,	WS0:	WDT	Time-out	period	selection
Described	elsewhere

Rev. 1.00 48 October 27, 2011 Rev. 1.00 49 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

USC Register

Bit 7 6 5 4 3 2 1 0
Name PS2_CKO PS2_DAO PS2_CKI PS2_DAI RESUME_O URST_FLAG RMOT_WK SUSPEND
R/W W W R R R R/W W R
POR 1 1 0 0 0 0 0 0

Bit	7	 PS2_CKO:		Output	for	driving	UDP/CLK	pin,	when	the	device	works	under	3D		
	PS2	mouse	function.	The	default	value	is	“1”.

Bit	6	 PS2_DAO:		Output	for	driving	UDN/DATA	pin,	when	the	device	works	under	3D	
	PS2	mouse	function.	The	default	value	is	“1”.

Bit	5	 PS2_CKI:	UDP/CLK	input	detect	bit
0:	input	“0”
1:	input	“1”

Bit	4	 PS2_DAI:	UDN/DATA	input	detect	bit
0:	input	“0”
1:	input	“1”

Bit	3	 RESUME_O:	USB	resume	indication	bit
0:	SUSPEND	bit	goes	to	“0”
1:	leave	the	suspend	mode

When	the	USB	leaves	the	suspend	mode,	this	bit	is	set	to	“1”	(set	by	SIE).	When	the	
RESUME	is	set	by	SIE,	an	interrupt	will	be	generated	to	wake-up	the	MCU.	In	order	
to	detect	the	suspend	state,	the	MCU	should	set	USBCKEN	and	clear	SUSP2	(in	the	
SCC	register)	to	enable	the	SIE	detect	function.	RESUME	will	be	cleared	when	the	
SUSPEND	goes	to	“0”.	When	the	MCU	is	detecting	the	SUSPEND,	the	condition	of	
RESUME	(causes	the	MCU	to	wake-up)	should	be	noted	and	taken	into	consideration.

Bit	2	 URST_FLAG:	USB	reset	indication	bit
0:	no	USB	reset	
1:	USB	reset	occurred

This	bit	is	set/cleared	by	the	USB	SIE.	This	bit	is	used	to	detect	a	USB	reset	event	on	
the	USB	bus.	When	this	bit	is	set	to	“1”,	this	indicates	that	a	USB	reset	has	occurred	
and	that	a	USB	interrupt	will	be	initialized.

Bit	1	 RMOT_WK:	USB	remote	wake-up	command
0:	no	remote	wake-up
1:	remote	wake-up

It	is	set	by	MCU	to	leave	the	USB	host	leaving	the	suspend	mode.	Indicate	that	the	
USB	host	leaves	the	suspend	mode.

Bit	0	 SUSPEND:	USB	suspend	indication	
0:	not	in	the	suspend	mode
1:	enter	the	suspend	mode

When	this	bit	 is	set	 to	1	(set	by	SIE),	 it	 indicates	 that	 the	USB	bus	has	entered	the	
suspend	mode.	The	USB	interrupt	is	also	triggered	when	this	bit	changes	from	low	to	
high.

Rev. 1.00 50 October 27, 2011 Rev. 1.00 51 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

The	USR	(USB	endpoint	 interrupt	status	register)	 register	 is	used	 to	 indicate	which	endpoint	 is	
accessed	and	to	select	the	serial	bus,	PS2	or	USB.	The	endpoint	request	flags,	EP0_INT,	EP1_INT	
and	EP2_INT,	are	used	to	indicate	which	endpoints	are	accessed.	If	an	endpoint	 is	accessed,	 the	
related	endpoint	request	flag	will	be	set	to	“1”	and	the	USB	interrupt	will	occur,	if	the	USB	interrupt	
is	enabled	and	the	stack	is	not	full.	When	the	active	endpoint	request	flag	is	served,	the	endpoint	
request	flag	has	to	be	cleared	to	“0”.

USR Register

Bit 7 6 5 4 3 2 1 0
Name USB_flag ― MODE_CTRL1 MODE_CTRL0 ― EP2_INT EP1_INT EP0_INT
R/W R/W ― R/W R/W ― R/W R/W R/W
POR 0 ― 0 0 ― 0 0 0

Bit	7	 USB_flag:	USB	mode	indication	flag
0:	not	in	USB	mode
1:	in	USB	mode

This	flag	is	used	to	indicate	the	MCU	is	in	USB	mode	or	not.	This	bit	will	be	cleared	
to	“0”	after	power-on	reset.	The	default	value	is	“0”.

Bit	6	 Unimplemented
Bit	5~4	 MODE_CTRL1,	MODE_CTRL0:	USB	mode	control	bits

00:		Non-USB	mode,	turn-off	V33O,	both	UDP	and	UDN	can	be	read	and	
	write	(default)

01:		Non-USB	mode,	has	200Ω	between	VDD	and	V33O,	both	UDP	and		
	UDN	can	be	read	and	write

10:		USB	mode,	1.5kΩ	between	UDN	and	V33O,	V33O	output	3.3V,	both		
	UDP	and	UDN	are	read	only

11:		Non-USB	mode,	V33O	output	3.3V,	both	UDP	and	UDN	can	be	read		
	and	write

Bit	3	 Unimplemented
Bit	2	 EP2_INT:	Endpoint	2	accessed	detection

0:	not	accessed	
1:	accessed

Bit	1	 EP1_INT:	Endpoint	1	accessed	detection
0:	not	accessed	
1:	accessed

Bit	0	 EP0_INT:	Endpoint	0	accessed	detection
0:	not	accessed	
1:	accessed

When	 the	EP0_INT,	EP1_INT,	or	EP2_INT	bit	 is	 set	 to	“1”	 (set	by	 the	SIE),	 it	
indicates	that	endpoint	0,	1,	or	2,	is	accessed	and	a	USB	interrupt	will	occur.	When	the	
interrupt	has	been	served,	this	bit	should	be	cleared	by	firmware.

Rev. 1.00 50 October 27, 2011 Rev. 1.00 51 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

There	is	a	system	clock	control	register	implement	to	select	the	clock	used	in	the	MCU.	This	register	
consisters	of	the	USB	clock	sontrol	bit,	USBCKEN,	second	suspend	mode	control	bit,	SUSP2,	and	
a	system	colck	selection	bit,	SYSCLK.	The	PS2	mode	indicate	bit,	PS2_flag,	and	a	system	clock	
adjust	control	bit,	CLK_adj.

SCC Register

Bit 7 6 5 4 3 2 1 0
Name CLK_adj SYSCLK PS2_flag SUSP2 USBCKEN ― ― ―
R/W R/W R/W R/W R/W R/W ― ― ―
POR 0 0 0 0 0 ― ― ―

Bit	7	 CLK_adj:	USB	mode	system	clock	adjustment
0:	enable	(default)
1:	disable

This	bit	is	used	to	adjust	the	system	clock	for	the	USB	mode	for	temperature	changes.
In	the	Power-down	Mode	this	bit	should	be	set	high	to	reduce	power	consumption.

Bit	6	 SYSCLK:	Specify	MCU	oscillator	frequency	indication	bit
0:	12MHz	crystal	oscillator	or	resonator,	clear	this	bit	to	“0”
1:	6MHz	crystal	oscillator	or	resonator,	set	this	bit	to	“1”

This	bit	 is	used	to	specify	 the	system	oscillator	frequency	used	by	the	MCU.	If	an	
Integrated	6MHz	oscillator	 is	used,	 this	bit	 should	be	set	 to	“1”.	 If	an	 Integrated	
12MHz	oscillator	is	used,	this	bit	should	be	cleared	to	“0”	(default).

Bit	5	 PS2_flag:	PS2	mode	indication	bit
0:	not	PS2	mode
1:	PS2	mode

This	flag	is	used	to	indicate	that	the	MCU	is	in	the	PS2	mode.	(Bit=1)
This	bit	is	R/W	by	FW	and	will	be	cleared	to	“0”	after	power-on	reset.	(Default="0")

Bit	4	 SUSP2:	Reduce	power	consumption	in	suspend	mode	control	bit
0:	in	normal	mode
1:	in	halt	mode,	set	this	bit	to	“1”	for	reducing	power	consumption

Bit	3	 USBCKEN:	USB	clock	control	bit
0:	disable
1:	enable

Bit	2~0	 Unimplemented	

STALL and PIPE, PIPE_CTRL, Endpt_EN Registers
The	PIPE	register	represents	whether	 the	corresponding	endpoint	 is	accessed	by	the	host	or	not.	
After	an	ACT_EN	signal	has	been	sent	out,	the	MCU	can	check	which	endpoint	had	been	accessed.	
This	register	is	set	only	after	the	a	time	when	the	host	is	accessing	the	corresponding	endpoint.

The	STALL	register	 shows	whether	 the	corresponding	endpoint	works	or	not.	As	soon	as	 the	
endpoint	works	improperly,	the	corresponding	bit	must	be	set.

The	PIPE_CTRL	Register	is	used	for	configuring	the	IN	(Bit=1)	or	OUT	(Bit=0)	Pipe.	The	default	
is	define	IN	pipe.	Bit	0	(DATA0)	of	the	PIPE_CTRL	Register	is	used	to	set	the	data	toggle	of	any	
endpoint	 (except	endpoint	0)	using	data	 toggles	 to	 the	value	DATA0.	Once	 the	user	wants	any	
endpoint	(except	endpoint	0)	using	data	toggles	to	the	value	DATA0.	the	user	can	output	a	LOW	
pulse	to	this	bit.	The	LOW	pulse	period	must	at	least	10	instruction	cycles.

The	Endpt_EN	Register	is	used	to	enable	or	disable	the	corresponding	endpoint	(except	endpoint	0)	
Enable	Endpoint	(Bit=1)	or	disable	Endpoint	(Bit=0)

Rev. 1.00 52 October 27, 2011 Rev. 1.00 53 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

PIPE_CTRL Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― ― ― SETIO2 SETIO1 DATA0
R/W ― ― ― ― ― R/W R/W R/W
POR ― ― ― ― ― 1 1 1

Bit	7~3	 Unimplemented
Bit	2	 SETIO2:	USB	PIPE	2	IN	or	OUT	control	bit

0:	out
1:	in	(default)

Bit	1	 SETIO1:	USB	PIPE	1	IN	or	OUT	control	bit
0:	out
1:	in	(default)

Bit	0	 DATA0:	USB	Endpoint	data	control	bit
0:	low
1:	high

STALL Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― ― ― STL2 STL1 STL0
R/W ― ― ― ― ― R/W R/W R/W
POR ― ― ― ― ― 1 1 1

Bit	7~3	 Unimplemented
Bit	2	 STL2:	USB	Endpoint	2	Stall	indication	bit

0:	not	stall
1:	stall

Bit	1	 STL1:	USB	Endpoint	1	Stall	indication	bit
0:	not	stall
1:	stall

Bit	0	 STL0:	USB	Endpoint	0	Stall	indication	bit
0:	not	stall
1:	stall

PIPE Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― ― ― Pipe2 Pipe1 Pipe0
R/W ― ― ― ― ― R R R
POR ― ― ― ― ― 0 0 0

Bit	7~3	 Unimplemented
Bit	2	 Pipe2:	USB	PIPE	2	in	use	indication	bit

0:	not	in	use
1:	in	use

Bit	1	 Pipe1:	USB	PIPE	1	in	use	indication	bit
0:	not	in	use
1:	in	use

Bit	0	 Pipe0:	USB	PIPE	0	in	use	indication	bit
0:	not	in	use
1:	in	use

Rev. 1.00 52 October 27, 2011 Rev. 1.00 53 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Endpt_EN Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― ― ― EP2EN EP1EN EP0EN
R/W ― ― ― ― ― R/W R/W R/W
POR ― ― ― ― ― 1 1 1

Bit	7~3	 Unimplemented
Bit	2	 EP2EN:	USB	Endpoint	2	control	bit

0:	disable
1:	enable

Bit	1	 EP1EN:	USB	Endpoint	1	control	bit
0:	disable
1:	enable

Bit	0	 EP0EN:	USB	Endpoint	0	control	bit
0:	disable
1:	enable

USB_STAT Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― SE1 SE0 K_state J_state EOP
R/W ― ― ― R/W R/W R/W R/W R/W
POR ― ― ― x x x x x

Bit	7~5	 Unimplemented
Bit	4	 SE1:	USB	SE1	noise	indication	bit

0:	no	noise
1:	noise

This	bit	is	used	to	indicate	the	SIE	has	detected	a	SE1	noise	in	the	USB	Bus.	This	bit	
is	set	by	SIE	and	cleared	by	F/W.

Bit	3	 SE0:	USB	SE0	noise	indication	bit
0:	no	noise
1:	noise

This	bit	is	used	to	indicate	the	SIE	has	detected	a	SE0	noise	in	the	USB	Bus.	This	bit	
is	set	by	SIE	and	cleared	by	F/W.

Bit	2	 K_state:	USB	SIE	K_state	indication	bit
0:	not	K_state
1:	K_state

This	bit	is	used	to	indicate	the	SIE	has	detected	a	K_state	USB	signal	in	the	USB	Bus.	
This	bit	is	set	by	SIE	and	cleared	by	F/W.

Bit	1	 J_state:	USB	SIE	J_state	indication	bit
0:	not	J_state
1:	J_state

This	bit	is	used	to	indicate	the	SIE	has	detected	a	J_state	USB	signal	in	the	USB	Bus.	
This	bit	is	set	by	SIE	and	cleared	by	F/W.

Bit	0	 EOP:	USB	EOP	indication	bit
0:	not	EOP
1:	EOP

This	bit	is	used	to	indicate	the	SIE	has	detected	an	EOP	USB	signal	in	the	USB	Bus.	
This	bit	is	set	by	SIE	and	cleared	by	F/W.

The	USB_STAT	Register	is	used	to	indicate	the	present	USB	signal	state.

Rev. 1.00 54 October 27, 2011 Rev. 1.00 55 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SIES Register

Bit 7 6 5 4 3 2 1 0
Name NMI ― ― ― ― ― F0_ERR ADR_SET
R/W R/W ― ― ― ― ― R/W R/W
POR 0 ― ― ― ― ― 0 0

Bit	7	 NMI:	NAK	token	interrupt	mask	flag
0:	always	has	USB	interrupt	if	the	USB	accesses	FIFO0	
1:	has	only	USB	interrupt,	data	is	transmitted	to	the	PC	host	or	data	is	received	from	
the	PC	Host

This	bit	is	used	to	control	whether	the	USB	interrupt	is	output	to	the	MCU	in	a	NAK	
response	to	the	PC	Host	IN	or	OUT	token,	only	for	Endpoint0.

Bit	6~2	 Unimplemented
Bit	1	 F0_ERR:	FIFO	accessed	error	indicator

0:	no	error
1:	error

This	bit	is	used	to	indicate	that	some	errors	have	occurred	when	the	FIFO	is	accessed.
This	bit	is	set	by	SIE	and	should	be	cleared	by	firmware.

Bit	0	 ADR_SET:	device	address	updated	method	control	bit
0:	update	address	after	an	written	address	to	the	AWR	register	
1:	update	address	after	PC	host	read	out	data

This	bit	is	used	to	configure	the	SIE	to	automatically	change	the	device	address	with	
the	value	of	the	Address+Remote_Wake-Up	Register.
When	this	bit	 is	set	 to	“1”	by	F/W,	the	SIE	will	update	the	device	address	with	the	
value	of	the	Address+Remote_Wake-Up	Register	after	the	PC	Host	has	successfully	
read	 the	data	from	the	device	by	 the	IN	operation.	The	SIE	will	clear	 the	bit	after	
updating	the	device	address.
Otherwise,	when	 this	bit	 is	cleared	 to	“0”,	 the	SIE	will	update	 the	device	address	
immediately	after	an	address	 is	written	to	 the	Address+Remote_Wake-Up	Register.	
Default	0.

Rev. 1.00 54 October 27, 2011 Rev. 1.00 55 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

MISC Register

Bit 7 6 5 4 3 2 1 0
Name LEN0 READY SCMD SELP1 SELP0 CLEAR TX REQ
R/W R R R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit	7	 LEN0:	0-sized	packet	indication	flag
0:		not	0-sized	packet
1:		0-sized	packet

This	bit	is	used	to	indicate	that	a	0-sized	packet	has	been	sent	from	a	host	to	the	MCU.	
This	bit	should	be	cleared	by	firmware.

Bit	6	 Ready:	Desired	FIFO	ready	indication	flag
0:	not	ready	
1:	ready

This	bit	is	used	to	indicate	that	the	desired	endpoint	FIFO	is	ready	for	operation.
Bit	5	 SCMD:	Setup	command	indication	flag

0:	not	setup	command	
1:	setup	command

This	bit	is	used	to	show	that	the	data	in	the	endpoint	FIFO	is	a	SETUP	command.	This	
bit	has	to	be	cleared	by	firmware.	That	is	to	say,	even	if	the	MCU	is	busy,	the	device	
will	not	miss	any	SETUP	commands	from	the	host.

Bit	4~3	 SELP1,	SELP0:	endpoint	FIFO	selection	bits
00:	endpoint	FIFO0
01:	endpoint	FIFO1
10:	endpoint	FIFO2
11:	reserved

Bit	2	 CLEAR:	Clear	FIFO	function	control	bit
0:	disable
1:	enable

This	bit	is	used	to	clear	the	FIFO,	even	if	the	FIFO	is	not	ready.	
Bit	1	 TX:	data	writing	to	FIFO	status	indication	flag

0:	data	writing	finished
1:	data	writing	to	FIFO

This	bit	defines	 the	direction	of	data	 transferring	between	 the	MCU	and	endpoint	
FIFO.	When	the	TX	is	set	to	“1”,	this	means	that	the	MCU	wants	to	write	data	to	the	
endpoint	FIFO.	After	 the	 task	 is	completed,	 this	bit	must	be	cleared	 to	“0”	before	
terminating	the	request	to	represent	the	end	of	transferring.	For	a	read	action,	this	bit	
has	to	be	cleared	to	“0”	to	represent	that	MCU	wants	to	read	data	from	the	endpoint	
FIFO	and	has	to	be	set	to	“1”	after	completion.

Bit	0	 REQUEST:	Desired	FIFO	request	status	indication	flag
0:	no	request	
1:	request

After	setting	the	other	status	of	the	desired	one	in	the	MISC,	endpoint	FIFO	can	be	
requested	by	setting	this	bit	to	“1”.	After	the	task	is	completed,	this	bit	must	be	cleared	
to	“0”.

Rev. 1.00 56 October 27, 2011 Rev. 1.00 57 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

The	MCU	can	communicate	with	 the	endpoint	FIFO	by	setting	 the	corresponding	registers,	of	
which	the	address	is	listed	in	the	following	table.	After	reading	the	current	data,	the	next	data	will	
show	after	2μs,	this	is	used	to	check	the	endpoint	FIFO	status	and	response	to	the	MISC	register,	if	
read/write	action	is	still	going	on.

Registers R/W Bank Address Bit7~Bit0
FIFO0 R/W 1 48H Data7~Data0
FIFO1 R/W 1 49H Data7~Data0
FIFO2 R/W 1 4AH Data7~Data0

There	are	some	timing	constrains	and	usages	illustrated	here.	By	setting	the	MISC	register,	the	MCU	
can	perform	reading,	writing	and	clearing	actions.	There	are	some	examples	shown	in	the	following	
table	for	endpoin	FIFO	reading,	writing	and	clearing.

Actions MISC Setting Flow and Status

Read FIFO0 sequence 00H→01H→delay 2μs, check 41H→read* from FIFO0
register and check not ready (01H) →03H→02H

Write FIFO1 sequence 0AH→0BH→delay 2μs, check 4BH→write* to FIFO1
register and check not ready (0BH) →09H→08H

Check whether FIFO0 can be read or not 00H→01H→delay 2μs, check 41H (read) or 01H
(not ready) →00H

Check whether FIFO1 can be written or not 0AH→0BH→delay 2μs, check 4BH (read) or 0BH
(not ready) →0AH

Read 0-sized packet sequence from FIFO0 00H→01H→delay 2μs, check 81H→read once
(01H)→03H→S02H

Write 0-sized packet sequence to FIFO1 0AH→0BH→delay 2μs, check 4BH→09H→08H

Note:	*:	There	is	a	2μs	time	between	2	read	actions	or	between	2	write	actions.

Rev. 1.00 56 October 27, 2011 Rev. 1.00 57 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Serial Interface – SPI
The	SPI	interface	is	often	used	to	communicate	with	external	peripheral	devices	such	as	sensors,	
Flash	or	EEPROM	memory	devices	etc..	Originally	developed	by	Motorola,	 the	 four	 line	SPI	
interface	is	a	synchronous	serial	data	interface	that	has	a	relatively	simple	communication	protocol	
simplifying	the	programming	requirements	when	communicating	with	external	hardware	devices.

The	communication	 is	full	duplex	and	operates	as	a	slave/master	 type,	where	 the	device	can	be	
either	master	or	slave.	Although	the	SPI	interface	specification	can	control	multiple	slave	devices	
from	a	single	master,	however	this	device	is	provided	with	only	one	SCS	pin.	If	the	master	needs	to	
control	multiple	slave	devices	from	a	single	master,	the	master	can	use	I/O	pins	to	select	the	slave	
devices.

SPI Interface Operation
The	SPI	interface	is	a	full	duplex	synchronous	serial	data	link.	It	 is	a	four	line	interface	with	pin	
names	SDI,	SDO,	SCK	and	SCS.	Pins	SDI	and	SDO	are	 the	Serial	Data	Input	and	Serial	Data	
Output	lines,	SCK	is	the	Serial	Clock	line	and	SCS	is	the	Slave	Select	line.	As	the	SPI	interface	pins	
are	pin-shared	with	normal	I/O	pins,	the	SPI	interface	must	first	be	enabled	by	setting	the	correct	
bits	in	the	SBCR	and	SPIR	registers.	The	SPI	can	be	disabled	or	enabled	using	the	SPI_EN	bit	in	
the	SPIR	register.	Communication	between	devices	connected	to	the	SPI	interface	is	carried	out	in	
a	slave/master	mode	with	all	data	transfer	initiations	being	implemented	by	the	master.	The	Master	
also	controls	the	clock	signal.	As	the	device	only	contains	a	single	SCS	pin	only	one	slave	device	
can	be	utilized.

The	SCS	pin	is	controlled	by	the	application	program,	set	the	CSEN	bit	to	“1”	to	enable	the	SCS	pin	
function	and	clear	the	CSEN	bit	to	“0”	to	place	the	SCS	pin	into	a	floating	state.

� � � � � � � � � � � � � � � � � � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

SPI Master/Slave Connection

� � � � � � � �

� � � � � � �

� � � � � � �

� � � �

� � � � � � � � � � � � � � � � � �

� � � 	
� � � � � �

� � � � � � � �

� � � � � � � � �

� � � � �
� � � � � � � � �
 � � 	

� � � �
 � �

� � � � �
� � �
 � � � � � � � � � � � �

� � � � � � �

� � � � � � �

� � � � �
 �
� � � � � �� � � � � �

� � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �

SPI Block Diagram

Rev. 1.00 58 October 27, 2011 Rev. 1.00 59 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

The	SPI	function	in	this	device	offers	the	following	features:

•	 Full	duplex	synchronous	data	transfer

•	 Both	Master	and	Slave	modes

•	 LSB	first	or	MSB	first	data	transmission	modes

•	 Transmission	complete	flag

•	 Rising	or	falling	active	clock	edge

The	status	of	the	SPI	interface	pins	is	determined	by	a	number	of	factors	such	as	whether	the	device	
is	in	the	master	or	slave	mode	and	upon	the	condition	of	certain	control	bits	such	as	SPI_CSEN	and	
SPI_EN.

SPI Registers
There	are	three	internal	registers	which	control	the	overall	operation	of	the	SPI	interface.	These	are	
the	SBDR	data	register	and	two	registers	SPIR	and	SBCR.

Register
Name

Bit

7 6 5 4 3 2 1 0
SPIR ― ― ― ― SPI_EN SPI_CSEN SPI_MODE SPI_CPOL
SBCR CKS M1 M0 SBEN MLS CSEN WCOL TRF
SBDR D7 D6 D5 D4 D3 D2 D1 D0

The	SBDR	register	is	used	to	store	the	data	being	transmitted	and	received.	Before	the	device	writes	
data	to	the	SPI	bus,	the	actual	data	to	be	transmitted	must	be	placed	in	the	SBDR	register.	After	the	
data	is	received	from	the	SPI	bus,	the	device	can	read	it	from	the	SBDR	register.	Any	transmission	
or	reception	of	data	from	the	SPI	bus	must	be	made	via	the	SBDR	register.

SBDR Register

Bit 7 6 5 4 3 2 1 0
Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W RW
POR X X X X X X X X

Bit	7~0	 D7~D0:	SPI	data	bits
Note	that	data	written	to	the	SBDR	register	will	only	be	written	to	the	TXRX	buffer,	whereas	data	
read	from	the	SBDR	register	will	actual	be	read	from	the	register.

There	are	also	two	control	registers	for	the	SPI	interface,	SPIR	and	SBCR.	Register	SPIR	is	used	to	
control	the	enable/disable	function	and	to	set	the	SPI	clock	active	edge	type.	Register	SBCR	is	used	
for	other	control	functions	such	as	LSB/MSB	selection,	write	collision	flag,	data	transmission	clock	
frequency	selection	etc..

Rev. 1.00 58 October 27, 2011 Rev. 1.00 59 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SPIR Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― ― SPI_EN SPI_CSEN SPI_MODE SPI_CPOL
R/W ― ― ― ― R/W R/W R/W R/W
POR ― ― ― ― 0 0 0 0

Bit	7~4	 Unimplemented
Bit	3	 SPI_EN:	SPI	interface	pins	control

0:	I/O	mode	(default)
1:	SPI	mode

Bit	2	 SPI_CSEN:	SPI	software	bit	CSEN	function	control
0:	disable.	The	CSEN	bit	has	no	effect	on	the	SCS	pin	and	the	SCS	pin	is	used	as	an	
I/O	pin

1:	enable.	The	CSEN	bit	is	used	as	the	enable/disable	control	for	the	SCS	pin
Bit	1	 SPI_MODE:	Determines	SPI	clock	SCK	active	clock	edge	type

SPI_CPOL=0
0:	SCK	is	high	base	level	and	data	capture	at	SCK	rising	edge
1:	SCK	is	high	base	level	and	data	capture	at	SCK	falling	edge

SPI_CPOL=1
0:	SCK	is	low	base	level	and	data	capture	at	SCK	falling	edge
1:	SCK	is	low	base	level	and	data	capture	at	SCK	rising	edge

The	SPI_MODE	and	SPI_CPOL	bits	are	used	to	setup	the	way	that	the	clock	signal	
outputs	and	 inputs	data	on	 the	SPI	bus.	These	 two	bits	must	be	configured	before	
data	transfer	 is	executed	otherwise	an	erroneous	clock	edge	may	be	generated.	The	
SPI_CPOL	bit	determines	the	base	condition	of	the	clock	line.	If	the	bit	is	high,	then	
the	SCK	line	will	be	 low	when	 the	clock	 is	 inactive.	When	 the	SPI_CPOL	bit	 is	
low,	then	the	SCK	line	will	be	high	when	the	clock	is	inactive.	The	SPI_MODE	bit	
determines	active	clock	edge	type	which	depends	upon	the	condition	of	SPI_CPOL	
bit.

Bit	0	 SPI_CPOL:	Determines	the	base	condition	of	the	SPI	clock	line	SCK
0:	the	SCK	line	will	be	high	when	the	SPI	clock	is	inactive
1:	the	SCK	line	will	be	low	when	the	SPI	clock	is	inactive

The	SPI_CPOL	bit	determines	the	base	condition	of	 the	SPI	clock	line,	 if	 the	bit	 is	
high,	then	the	SCK	line	will	be	low	when	the	clock	is	inactive.	When	the	SPI_CPOL	
bit	is	low,	then	the	SCK	line	will	be	high	when	the	clock	is	inactive.

Rev. 1.00 60 October 27, 2011 Rev. 1.00 61 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SBCR Register

Bit 7 6 5 4 3 2 1 0
Name CKS M1 M0 SBEN MLS CSEN WCOL TRF
R/W R/W R/W R/W R/W R/W R/W R/W RW
POR 0 1 1 0 0 0 0 0

Bit	7	 CKS:	SPI	clock	fSPI	source	selection
0:	fSPI=fSYS/2
1:	fSPI=fSYS	

Bit	6~5	 M1~M0:	SPI	Operating	Mode	and	baud	rate	control	bits
00:	SPI	master	mode;	SPI	clock	is	fSPI

01:	SPI	master	mode;	SPI	clock	is	fSPI/4
10:	SPI	master	mode;	SPI	clock	is	fSPI/16
11:	SPI	slave	mode

This	bit	can	be	read	or	written	by	user	software	program.
Bit	4	 SBEN:	SPI	serial	bus	enable	control

0:	disable
1:	enable

The	bit	 is	 the	overall	on/off	control	 for	 the	SPI	serial	bus.	When	 the	SBEN	bit	 is	
cleared	to	zero	to	disable	the	SPI	interface,	the	SDI,	SDO,	SCK	and	SCS	lines	will	
be	in	a	floating	condition	and	the	SPI	operating	current	will	be	reduced	to	a	minimum	
value.	When	the	bit	is	high,	the	SPI	interface	is	enabled.

Bit	3	 MLS:	SPI	Data	shift	order
0:	LSB	shift	first
1:	MSB	shift	first

This	is	the	data	shift	select	bit	and	is	used	to	select	how	the	data	is	transferred,	either	
MSB	or	LSB	first.	Setting	the	bit	high	will	select	MSB	first	and	low	for	LSB	first.

Bit	2	 CSEN:	SPI	SCS	pin	control
0:	disable,	other	functions
1:	enable

The	CSEN	bit	is	used	as	an	enable/disable	for	the	SCS	pin.	If	this	bit	is	low,	then	the	
SCS	pin	will	be	disabled	and	placed	into	a	floating	condition.	If	the	bit	is	high	the	SCS	
pin	will	be	enabled	and	used	as	a	select	pin.
Note	 that	using	 the	CSEN	bit	can	be	disabled	or	enabled	by	 the	CSEN	control	bit	
named	SPI_CSEN	in	the	SPIR	register.

Bit	1	 WCOL:	SPI	Write	Collision	flag
0:	collision	free
1:	collision	detected

The	WCOL	flag	is	used	to	detect	if	a	data	collision	has	occurred.	If	this	bit	is	high	it	
means	that	data	has	been	attempted	to	be	written	to	the	SBDR	register	during	a	data	
transfer	operation.	This	writing	operation	will	be	ignored	if	data	is	being	transferred.	
The	bit	can	be	cleared	by	the	application	program.	

Bit	0	 TRF:	SPI	Transmit/Receive	Complete	flag
0:	not	complete
1:	transmission/reception	complete

The	TRF	bit	is	the	Transmit/Receive	Complete	flag	and	is	set	to	1	automatically	when	
an	SPI	data	transmission	is	completed,	but	must	be	set	to	0	by	the	application	program.	
It	can	be	used	to	generate	an	interrupt.

Rev. 1.00 60 October 27, 2011 Rev. 1.00 61 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SPI Communication
After	the	SPI	interface	is	enabled	by	setting	the	SPI_EN	bit	high,	then	in	the	Master	Mode,	when	
data	is	written	to	the	SBDR	register,	 transmission/reception	will	begin	simultaneously.	When	the	
data	 transfer	 is	complete,	 the	TRF	flag	will	be	set	automatically,	but	must	be	cleared	using	 the	
application	program.	In	the	Slave	Mode,	when	the	clock	signal	from	the	master	has	been	received,	
any	data	in	the	SBDR	register	will	be	transmitted	and	any	data	on	the	SDI	pin	will	be	shifted	into	
the	SBDR	register.	The	master	should	output	an	SCS	signal	 to	enable	 the	slave	device	before	a	
clock	signal	is	provided.	The	slave	data	to	be	transferred	should	be	well	prepared	at	the	appropriate	
moment	relative	to	the	SCS	signal	depending	upon	the	options	of	the	SPI_MODE	bit	and	SPI_CPOL	
bit.	The	accompanying	timing	diagram	shows	the	relationship	between	the	slave	data	and	SCS	signal	
for	various	configurations	of	the	SPI_MODE	and	SPI_CPOL	bits.

The	SPI	will	continue	to	function	even	in	the	IDLE	Mode.

Rev. 1.00 62 October 27, 2011 Rev. 1.00 63 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

SPI master mode timing

SDI Data capture

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

SPI slave mode timing(SPI_MODE=0)

SDI Data capture

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

(SDO change as soon as writing occur; SDO=floating if SCS=1)

SDI Data capture

SCS SBEN, CSEN=1

Write to SBDR

SCK (SPI_CPOL=1
SPI_MODE=0)

SDO

SCK

SCK

SDO

SCS

SCK ()

SCK ()

SCK ()

SDO

Write to SBDR

Write to SBDR

SCK

SCK

SDO

SCS

SBEN=1, CSEN=0 (external pull-high)

SPI_CPOL=0
SPI_MODE=0

SPI_CPOL=1
SPI_MODE=1

SPI_CPOL=0
SPI_MODE=1

SPI_MODE=0

SPI_MODE=1

SPI slave mode timing(SPI_MODE=1)

Note:
 For SPI slave mode, If SBEN=1 and CSEN=0, SPI is
 always enabled and ignore the SCS level

(

()

)

(SDO not change Until first SCK edge)

(SPI_CPOL=1)

(SPI_CPOL=0)

(SPI_CPOL=1)

()SPI_CPOL=0

Rev. 1.00 62 October 27, 2011 Rev. 1.00 63 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SBEN=1

write data into
SBDR

WCOL=1?

clear WCOL

Y

transmission
completed?
(TRF=1?)

N

Y

read data from
SBDR

clear TRF

transfer finished? N

Y

END

master or slavemaster slave

A

A SPI transfer

Configure CSEN
and MLS

M1 M0=11M1 M0
= 00,01,10

Setup CKS

FSPI=Fsys/1,/2

SPI Transfer Control Flowchart

SPI Bus Enable/Disable
To	enable	the	SPI	bus,	set	SBEN	=1,	CSEN	=	1	and	SCS=0,	then	wait	for	data	to	be	written	into	the	
SBDR	(TXRX	buffer)	register.	For	the	Master	Mode,	after	data	has	been	written	to	the	SBDR	(TXRX	
buffer)	register,	then	transmission	or	reception	will	start	automatically.	When	all	the	data	has	been	
transferred	the	TRF	bit	should	be	set.	For	the	Slave	Mode,	when	clock	pulses	are	received	on	SCK,	
data	in	the	TXRX	buffer	will	be	shifted	out	or	data	on	SDI	will	be	shifted	in.

To	Disable	the	SPI	bus	SCK,	SDI,	SDO,	SCS	should	be	in	a	floating	condition.

Rev. 1.00 64 October 27, 2011 Rev. 1.00 65 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SPI Operation
All	communication	is	carried	out	using	the	4-line	interface	for	either	Master	or	Slave	Mode.	

The	CSEN	bit	in	the	SBCR	register	controls	the	overall	function	of	the	SPI	interface.	Setting	this	
bit	high	will	enable	 the	SPI	 interface	by	allowing	 the	SCS	line	 to	be	active,	which	can	 then	be	
used	to	control	 the	SPI	 interface.	If	 the	CSEN	bit	 is	 low,	 the	SPI	 interface	will	be	disabled	and	
the	SCS	line	will	be	in	a	floating	condition	and	can	therefore	not	be	used	for	control	of	 the	SPI	
interface.	The	SBEN	bit	in	the	SBCR	register	must	also	be	high	which	will	place	the	SDI	line	in	a	
floating	condition	and	the	SDO	line	high.	If	in	Master	Mode	the	SCK	line	will	be	either	high	or	low	
depending	upon	the	clock	polarity	selection	bit	SPI_CPOL	in	the	SPIR	register.	If	in	Slave	Mode	the	
SCK	line	will	be	in	a	floating	condition.	If	SBEN	is	low	then	the	bus	will	be	disabled	and	SCS,	SDI,	
SDO	and	SCK	will	all	be	in	a	floating	condition.

In	 the	Master	Mode	 the	Master	will	 always	generate	 the	 clock	 signal.	The	 clock	 and	data	
transmission	will	be	initiated	after	data	has	been	written	into	the	SBDR	register.	In	the	Slave	Mode,	
the	clock	signal	will	be	received	from	an	external	master	device	for	both	data	 transmission	and	
reception.	The	following	sequences	show	the	order	to	be	followed	for	data	transfer	in	both	Master	
and	Slave	Mode:

Master Mode:
•	 Step	1
Select	the	clock	source	using	the	CKS	bit	in	the	SBCR	control	register

•	 Step	2
Setup	the	M0	and	M1	bits	in	the	SBCR	control	register	to	select	the	Master	Mode	and	the	required	
Baud	rate.	Values	of	00,	01	or	10	can	be	selected.

•	 Step	3
Setup	the	CSEN	bit	and	setup	the	MLS	bit	to	choose	if	the	data	is	MSB	or	LSB	first,	this	must	be	
same	as	the	Slave	device.

•	 Step	4
Setup	the	SBEN	bit	in	the	SBCR	control	register	to	enable	the	SPI	interface.

•	 Step	5
For	write	operations:	write	the	data	to	the	SBDR	register,	which	will	actually	place	the	data	into	
the	TXRX	buffer.	Then	use	the	SCK	and	SCS	lines	to	output	the	data.	After	this	go	to	step6.
For	read	operations:	the	data	transferred	in	on	the	SDI	line	will	be	stored	in	the	TXRX	buffer	until	
all	the	data	has	been	received	at	which	point	it	will	be	latched	into	the	SBDR	register.

•	 Step	6
Check	the	WCOL	bit	if	set	high	then	a	collision	error	has	occurred	so	return	to	step5.	If	equal	to	
zero	then	go	to	the	following	step.

•	 Step	7
Check	the	TRF	bit	or	wait	for	a	SPI	serial	bus	interrupt.

•	 Step	8
Read	data	from	the	SBDR	register.

•	 Step	9
Clear	TRF.

•	 Step10
Go	to	step	5.

Rev. 1.00 64 October 27, 2011 Rev. 1.00 65 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Slave Mode:
•	 Step	1
The	CKS	bit	has	a	“don’t	care”	value	in	the	slave	mode.

•	 Step	2
Setup	the	M0	and	M1	bits	in	the	SBCR	control	register	to	11	to	select	the	Slave	Mode.	The	CKS	
bit	is	don’t	care.

•	 Step	3
Setup	the	CSEN	bit	and	setup	the	MLS	bit	to	choose	if	the	data	is	MSB	or	LSB	first,	this	must	be	
same	as	the	Master	device.

•	 Step	4
Setup	the	SBEN	bit	in	the	SBCR	control	register	to	enable	the	SPI	interface.

•	 Step	5
For	write	operations:	write	the	data	to	the	SBDR	register,	which	will	actually	place	the	data	into	
the	TXRX	buffer.	Then	wait	for	the	master	clock	SCK	and	SCS	signal.	After	this	go	to	step6.
For	read	operations:	the	data	transferred	in	on	the	SDI	line	will	be	stored	in	the	TXRX	buffer	until	
all	the	data	has	been	received	at	which	point	it	will	be	latched	into	the	SBDR	register.

•	 Step	6
Check	the	WCOL	bit	if	set	high	then	a	collision	error	has	occurred	so	return	to	step5.	If	equal	to	
zero	then	go	to	the	following	step.

•	 Step	7
Check	the	TRF	bit	or	wait	for	a	SPI	serial	bus	interrupt.

•	 Step	8
Read	data	from	the	SBDR	register.

•	 Step	9
Clear	TRF.

•	 Step10
Go	to	step	5.

Error Detection
The	WCOL	bit	in	the	SBCR	register	is	provided	to	indicate	errors	during	data	transfer.	The	bit	 is	
set	by	the	SPI	serial	Interface	but	must	be	cleared	by	the	application	program.	This	bit	indicates	a	
data	collision	has	occurred	which	happens	if	a	write	to	the	SBDR	register	takes	place	during	a	data	
transfer	operation	and	will	prevent	the	write	operation	from	continuing.	

Rev. 1.00 66 October 27, 2011 Rev. 1.00 67 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Configuration Options
No. Options
1 PA0~7 Pull-high by bit (default Pull-high)
2 PB wake-up by nibble (default Pull-high)
3 PB Pull-high by nibble (default Pull-high)
4 LVR enable/disable (default enable)
5 WDT function: enable, disable for normal mode (default enable)
6 WDT clock source: RC; fSYS/4 (default T1)
7 CLRWDT instruction is by 1 or 2
8 PA output mode (CMOS/NMOS/PMOS) by bit (default CMOS)
9 PA0~7 wake-up by bit (default enable)

10 TBHP enable/disable (default disable)
11 PE0, PE1 Pull-high by bit
12 PE0, PE1, PE2 wake-up by bit
13 PA0~7 Power source: VDD (default VDD)/V33O regulator output
14 PE2/RES pin option (default RES pin)

Application Circuit

� � � � � � �

� � � � � � � �

� � � �

� � �

� � � �
� � � �
� � �

� � � �

� � �

 	 �

� � �

� � � �

� � � � �� � � � � � � �

� � � � � � �
� � � � � � �

� 	 � � � 	 �

� � � �

� � � � � � � �

Note:	The	resistance	and	capacitance	for	the	reset	circuit	should	be	designed	in	such	a	way	as	to	
ensure	 that	 the	VDD	is	stable	and	remains	within	a	valid	operating	voltage	range	before	
bringing	RES	high.

Rev. 1.00 66 October 27, 2011 Rev. 1.00 67 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Instruction Set

Introduction
Central	 to	 the	successful	operation	of	any	microcontroller	 is	 its	 instruction	set,	which	is	a	set	of	
program	instruction	codes	that	directs	the	microcontroller	to	perform	certain	operations.	In	the	case	
of	Holtek	microcontrollers,	a	comprehensive	and	flexible	set	of	over	60	instructions	is	provided	to	
enable	programmers	to	implement	their	application	with	the	minimum	of	programming	overheads.

For	easier	understanding	of	the	various	instruction	codes,	 they	have	been	subdivided	into	several	
functional	groupings.

Instruction Timing
Most	instructions	are	implemented	within	one	instruction	cycle.	The	exceptions	to	this	are	branch,	
call,	or	 table	read	instructions	where	two	instruction	cycles	are	required.	One	instruction	cycle	is	
equal	to	4	system	clock	cycles,	therefore	in	the	case	of	an	8MHz	system	oscillator,	most	instructions	
would	be	implemented	within	0.5µs	and	branch	or	call	 instructions	would	be	implemented	within	
1µs.	Although	instructions	which	require	one	more	cycle	 to	 implement	are	generally	 limited	 to	
the	JMP,	CALL,	RET,	RETI	and	table	read	instructions,	 it	 is	 important	 to	realize	 that	any	other	
instructions	which	involve	manipulation	of	the	Program	Counter	Low	register	or	PCL	will	also	take	
one	more	cycle	to	implement.	As	instructions	which	change	the	contents	of	the	PCL	will	 imply	a	
direct	 jump	to	that	new	address,	one	more	cycle	will	be	required.	Examples	of	such	instructions	
would	be	″CLR	PCL″	or	″MOV	PCL,	A″.	For	the	case	of	skip	instructions,	it	must	be	noted	that	if	
the	result	of	the	comparison	involves	a	skip	operation	then	this	will	also	take	one	more	cycle,	if	no	
skip	is	involved	then	only	one	cycle	is	required.

Moving and Transferring Data
The	 transfer	of	data	within	 the	microcontroller	program	 is	one	of	 the	most	 frequently	used	
operations.	Making	use	of	three	kinds	of	MOV	instructions,	data	can	be	transferred	from	registers	to	
the	Accumulator	and	vice-versa	as	well	as	being	able	to	move	specific	immediate	data	directly	into	
the	Accumulator.	One	of	the	most	important	data	transfer	applications	is	 to	receive	data	from	the	
input	ports	and	transfer	data	to	the	output	ports.

Arithmetic Operations
The	ability	to	perform	certain	arithmetic	operations	and	data	manipulation	is	a	necessary	feature	of	
most	microcontroller	applications.	Within	the	Holtek	microcontroller	instruction	set	are	a	range	of	
add	and	subtract	 instruction	mnemonics	to	enable	the	necessary	arithmetic	to	be	carried	out.	Care	
must	be	 taken	 to	ensure	correct	handling	of	carry	and	borrow	data	when	results	exceed	255	for	
addition	and	less	than	0	for	subtraction.	The	increment	and	decrement	instructions	INC,	INCA,	DEC	
and	DECA	provide	a	simple	means	of	increasing	or	decreasing	by	a	value	of	one	of	the	values	in	the	
destination	specified.

Rev. 1.00 68 October 27, 2011 Rev. 1.00 69 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Logical and Rotate Operations
The	standard	logical	operations	such	as	AND,	OR,	XOR	and	CPL	all	have	their	own	instruction	
within	the	Holtek	microcontroller	 instruction	set.	As	with	the	case	of	most	 instructions	involving	
data	manipulation,	 data	must	 pass	 through	 the	Accumulator	which	may	 involve	 additional	
programming	steps.	 In	all	 logical	data	operations,	 the	zero	 flag	may	be	set	 if	 the	 result	of	 the	
operation	is	zero.	Another	form	of	logical	data	manipulation	comes	from	the	rotate	instructions	such	
as	RR,	RL,	RRC	and	RLC	which	provide	a	simple	means	of	rotating	one	bit	right	or	left.	Different	
rotate	instructions	exist	depending	on	program	requirements.	Rotate	instructions	are	useful	for	serial	
port	programming	applications	where	data	can	be	rotated	from	an	internal	register	 into	the	Carry	
bit	from	where	it	can	be	examined	and	the	necessary	serial	bit	set	high	or	low.	Another	application	
where	rotate	data	operations	are	used	is	to	implement	multiplication	and	division	calculations.

Branches and Control Transfer
Program	branching	takes	the	form	of	either	jumps	to	specified	locations	using	the	JMP	instruction	or	
to	a	subroutine	using	the	CALL	instruction.	They	differ	in	the	sense	that	in	the	case	of	a	subroutine	
call,	 the	program	must	return	to	the	instruction	immediately	when	the	subroutine	has	been	carried	
out.	This	is	done	by	placing	a	return	instruction	RET	in	the	subroutine	which	will	cause	the	program	
to	jump	back	to	the	address	right	after	the	CALL	instruction.	In	the	case	of	a	JMP	instruction,	the	
program	simply	jumps	to	the	desired	location.	There	is	no	requirement	to	jump	back	to	the	original	
jumping	off	point	as	 in	 the	case	of	 the	CALL	instruction.	One	special	and	extremely	useful	set	
of	branch	 instructions	are	 the	conditional	branches.	Here	a	decision	 is	 first	made	regarding	 the	
condition	of	a	certain	data	memory	or	individual	bits.	Depending	upon	the	conditions,	the	program	
will	continue	with	the	next	instruction	or	skip	over	it	and	jump	to	the	following	instruction.	These	
instructions	are	the	key	to	decision	making	and	branching	within	the	program	perhaps	determined	
by	the	condition	of	certain	input	switches	or	by	the	condition	of	internal	data	bits.

Bit Operations
The	ability	to	provide	single	bit	operations	on	Data	Memory	is	an	extremely	flexible	feature	of	all	
Holtek	microcontrollers.	This	feature	 is	especially	useful	for	output	port	bit	programming	where	
individual	bits	or	port	pins	can	be	directly	set	high	or	low	using	either	the	″SET	[m].i″	or	″CLR	[m].i″	
instructions	respectively.	The	feature	removes	the	need	for	programmers	to	first	read	the	8-bit	output	
port,	manipulate	the	input	data	to	ensure	that	other	bits	are	not	changed	and	then	output	the	port	with	
the	correct	new	data.	This	read-modify-write	process	is	taken	care	of	automatically	when	these	bit	
operation	instructions	are	used.

Table Read Operations
Data	storage	 is	normally	 implemented	by	using	 registers.	However,	when	working	with	 large	
amounts	of	fixed	data,	 the	volume	involved	often	makes	it	 inconvenient	to	store	the	fixed	data	in	
the	Data	Memory.	To	overcome	this	problem,	Holtek	microcontrollers	allow	an	area	of	Program	
Memory	to	be	setup	as	a	table	where	data	can	be	directly	stored.	A	set	of	easy	to	use	instructions	
provides	 the	means	by	which	 this	 fixed	data	can	be	referenced	and	retrieved	from	the	Program	
Memory.

Other Operations
In	addition	 to	 the	above	functional	 instructions,	a	 range	of	other	 instructions	also	exist	such	as	
the	″HALT″	instruction	for	Power-down	operations	and	 instructions	 to	control	 the	operation	of	
the	Watchdog	Timer	for	 reliable	program	operations	under	extreme	electric	or	electromagnetic	
environments.	For	their	relevant	operations,	refer	to	the	functional	related	sections.

Rev. 1.00 68 October 27, 2011 Rev. 1.00 69 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Instruction Set Summary
The	following	table	depicts	a	summary	of	the	instruction	set	categorised	according	to	function	and	
can	be	consulted	as	a	basic	instruction	reference	using	the	following	listed	conventions.

Table	conventions:	
x:	Bits	immediate	data	
m:	Data	Memory	address	
A:	Accumulator	
i:	0~7	number	of	bits	
addr:	Program	memory	address

Mnemonic Description Cycles Flag Affected
Arithmetic
ADD A,[m] Add Data Memory to ACC 1 Z, C, AC, OV
ADDM A,[m] Add ACC to Data Memory 1Note Z, C, AC, OV
ADD A,x Add immediate data to ACC 1 Z, C, AC, OV
ADC A,[m] Add Data Memory to ACC with Carry 1 Z, C, AC, OV
ADCM A,[m] Add ACC to Data memory with Carry 1Note Z, C, AC, OV
SUB A,x Subtract immediate data from the ACC 1 Z, C, AC, OV
SUB A,[m] Subtract Data Memory from ACC 1 Z, C, AC, OV
SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory 1Note Z, C, AC, OV
SBC A,[m] Subtract Data Memory from ACC with Carry 1 Z, C, AC, OV
SBCM A,[m] Subtract Data Memory from ACC with Carry, result in Data Memory 1Note Z, C, AC, OV
DAA [m] Decimal adjust ACC for Addition with result in Data Memory 1Note C
Logic Operation
AND A,[m] Logical AND Data Memory to ACC 1 Z
OR A,[m] Logical OR Data Memory to ACC 1 Z
XOR A,[m] Logical XOR Data Memory to ACC 1 Z
ANDM A,[m] Logical AND ACC to Data Memory 1Note Z
ORM A,[m] Logical OR ACC to Data Memory 1Note Z
XORM A,[m] Logical XOR ACC to Data Memory 1Note Z
AND A,x Logical AND immediate Data to ACC 1 Z
OR A,x Logical OR immediate Data to ACC 1 Z
XOR A,x Logical XOR immediate Data to ACC 1 Z
CPL [m] Complement Data Memory 1Note Z
CPLA [m] Complement Data Memory with result in ACC 1 Z
Increment & Decrement
INCA [m] Increment Data Memory with result in ACC 1 Z
INC [m] Increment Data Memory 1Note Z
DECA [m] Decrement Data Memory with result in ACC 1 Z
DEC [m] Decrement Data Memory 1Note Z
Rotate
RRA [m] Rotate Data Memory right with result in ACC 1 None
RR [m] Rotate Data Memory right 1Note None
RRCA [m] Rotate Data Memory right through Carry with result in ACC 1 C
RRC [m] Rotate Data Memory right through Carry 1Note C
RLA [m] Rotate Data Memory left with result in ACC 1 None
RL [m] Rotate Data Memory left 1Note None
RLCA [m] Rotate Data Memory left through Carry with result in ACC 1 C
RLC [m] Rotate Data Memory left through Carry 1Note C

Rev. 1.00 70 October 27, 2011 Rev. 1.00 71 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Mnemonic Description Cycles Flag Affected
Data Move
MOV A,[m] Move Data Memory to ACC 1 None
MOV [m],A Move ACC to Data Memory 1Note None
MOV A,x Move immediate data to ACC 1 None
Bit Operation
CLR [m].i Clear bit of Data Memory 1Note None
SET [m].i Set bit of Data Memory 1Note None
Branch
JMP addr Jump unconditionally 2 None
SZ [m] Skip if Data Memory is zero 1Note None
SZA [m] Skip if Data Memory is zero with data movement to ACC 1Note None
SZ [m].i Skip if bit i of Data Memory is zero 1Note None
SNZ [m].i Skip if bit i of Data Memory is not zero 1Note None
SIZ [m] Skip if increment Data Memory is zero 1Note None
SDZ [m] Skip if decrement Data Memory is zero 1Note None
SIZA [m] Skip if increment Data Memory is zero with result in ACC 1Note None
SDZA [m] Skip if decrement Data Memory is zero with result in ACC 1Note None
CALL addr Subroutine call 2 None
RET Return from subroutine 2 None
RET A,x Return from subroutine and load immediate data to ACC 2 None
RETI Return from interrupt 2 None
Table Read
TABRDC [m](4) Read ROM code(locate by TBLP and TBHP) to data memory and TBLH 2Note None
TABRDC [m](5) Read ROM code(current page) to data memory and TBLH 2Note None
TABRDL [m] Read table (last page) to TBLH and Data Memory 2Note None
Miscellaneous
NOP No operation 1 None
CLR [m] Clear Data Memory 1Note None
SET [m] Set Data Memory 1Note None
CLR WDT Clear Watchdog Timer 1 TO, PDF
CLR WDT1 Pre-clear Watchdog Timer 1 TO, PDF
CLR WDT2 Pre-clear Watchdog Timer 1 TO, PDF
SWAP [m] Swap nibbles of Data Memory 1Note None
SWAPA [m] Swap nibbles of Data Memory with result in ACC 1 None
HALT Enter power down mode 1 TO, PDF

Note:	1.	For	skip	instructions,	if	the	result	of	the	comparison	involves	a	skip	then	two	cycles	are	required,	if	no	
skip	takes	place	only	one	cycle	is	required.

2.	Any	instruction	which	changes	the	contents	of	the	PCL	will	also	require	2	cycles	for	execution.

3.	For	 the	"CLR	WDT1"	and	"CLR	WDT2"	instructions	 the	TO	and	PDF	flags	may	be	affected	by	the	
execution	 status.	The	TO	and	PDF	 flags	are	cleared	after	both	 "CLR	WDT1"	and	"CLR	WDT2"	
instructions	are	consecutively	executed.	Otherwise	the	TO	and	PDF	flags	remain	unchanged.

4.	"TBHP	option"	is	enabled	by	Configuration	Option.

5.	"TBHP	option"	is	disabled	by	Configuration	Option.

Rev. 1.00 70 October 27, 2011 Rev. 1.00 71 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Instruction Definition
Add Data Memory to ACC with Carry
The contents of the specified Data Memory, Accumulator and the carry flag are
added. The result is stored in the Accumulator.
ACC ← ACC + [m] + C
OV, Z, AC, C

Add ACC to Data Memory with Carry
The contents of the specified Data Memory, Accumulator and the carry flag are
added. The result is stored in the specified Data Memory.
[m] ← ACC + [m] + C
OV, Z, AC, C

Add Data Memory to ACC
The contents of the specified Data Memory and the Accumulator are added. The
result is stored in the Accumulator.
ACC ← ACC + [m]
OV, Z, AC, C

Add immediate data to ACC
The contents of the Accumulator and the specified immediate data are added. The
result is stored in the Accumulator.
AC ← ACC + x
OV, Z, AC, C

Add ACC to Data Memory
The contents of the specified Data Memory and the Accumulator are added. The
result is stored in the specified Data Memory.
[m] ← ACC + [m]
OV, Z, AC, C

Logical AND Data Memory to ACC
Data in the Accumulator and the specified Data Memory perform a bitwise logical
AND operation. The result is stored in the Accumulator.
ACC ← ACC "AND" [m]
Z

Logical AND immediate data to ACC
Data in the Accumulator and the specified immediate data perform a bitwise
logical AND operation. The result is stored in the Accumulator.
ACC ← ACC " AND" x
Z

Logical AND ACC to Data Memory
Data in the specified Data Memory and the Accumulator perform a bitwise logical
AND operation. The result is stored in the Data Memory.
[m] ← ACC " AND" [m]
Z

ADC A,[m]
Description

Operation
Affected flag(s)

ADCM A,[m]
Description

Operation
Affected flag(s)

ADD A,[m]
Description

Operation
Affected flag(s)

ADD A,x
Description

Operation
Affected flag(s)

ADDM A,[m]
Description

Operation
Affected flag(s)

AND A,[m]
Description

Operation
Affected flag(s)

AND A,x
Description

Operation
Affected flag(s)

ANDM A,[m]
Description

Operation
Affected flag(s)

Rev. 1.00 72 October 27, 2011 Rev. 1.00 73 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Subroutine call
Unconditionally calls a subroutine at the specified address. The Program Counter
then increments by 1 to obtain the address of the next instruction which is then
pushed onto the stack. The specified address is then loaded and the program
continues execution from this new address. As this instruction requires an
additional operation, it is a two cycle instruction.
Stack ← Program Counter + 1
Program Counter ← addr
None

Clear Data Memory
Each bit of the specified Data Memory is cleared to 0.
[m] ← 00H
None

Clear bit of Data Memory
Bit i of the specified Data Memory is cleared to 0.
[m].i ← 0
None

Clear Watchdog Timer
The TO, PDF flags and the WDT are all cleared.
WDT cleared
TO ← 0
PDF ← 0
TO, PDF

Pre-clear Watchdog Timer
The TO, PDF flags and the WDTare all cleared. Note that this instruction works in
conjunction with CLR WDT2 and must be executed alternately with CLR WDT2
to have effect. Repetitively executing this instruction without alternately executing
CLR WDT2 will have no effect.
WDT cleared
TO ← 0
PDF ← 0
TO, PDF

Pre-clear Watchdog Timer
The TO, PDF flags and the WDTare all cleared. Note that this instruction works in
conjunction with CLR WDT1 and must be executed alternately with CLR WDT1
to have effect. Repetitively executing this instruction without alternately executing
WDT cleared
TO ← 0
PDF ← 0
TO, PDF

CALL addr
Description

Operation

Affected flag(s)

CLR [m]
Description
Operation
Affected flag(s)

CLR [m].i
Description
Operation
Affected flag(s)

CLR WDT
Description
Operation

Affected flag(s)

CLR WDT1
Description

Operation

Affected flag(s)

CLR WDT2
Description

Operation

Affected flag(s)

Rev. 1.00 72 October 27, 2011 Rev. 1.00 73 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Complement Data Memory
Each bit of the specified Data Memory is logically complemented (1's
complement). Bits which previously contained a 1 are changed to 0 and vice
versa.
[m] ← [m]
Z

Complement Data Memory with result in ACC
Each bit of the specified Data Memory is logically complemented (1's
complement). Bits which previously contained a 1 are changed to 0 and vice
versa. The complemented result is stored in the Accumulator and the contents of
the Data Memory remain unchanged.
ACC ← [m]
Z

Decimal-Adjust ACC for addition with result in Data Memory
Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal)
value resulting from the previous addition of two BCD variables. If the low nibble
is greater than 9 or if AC flag is set, then a value of 6 will be added to the low
nibble. Otherwise the low nibble remains unchanged. If the high nibble is greater
than 9 or if the C flag is set, then a value of 6 will be added to the high nibble.
Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or
66H depending on the Accumulator and flag conditions. Only the C flag may be
affected by this instruction which indicates that if the original BCD sum is greater
than 100, it allows multiple precision decimal addition.
[m] ← ACC + 00H or
[m] ← ACC + 06H or
[m] ← ACC + 60H or
[m] ← ACC + 66H
C

Decrement Data Memory
Data in the specified Data Memory is decremented by 1.
[m] ← [m] ― 1
Z

Decrement Data Memory with result in ACC
Data in the specified Data Memory is decremented by 1. The result is stored in
the Accumulator. The contents of the Data Memory remain unchanged.
ACC ← [m] ― 1
Z

CPL [m]
Description

Operation
Affected flag(s)

CPLA [m]
Description

Operation
Affected flag(s)

DAA [m]
Description

Operation

Affected flag(s)

DEC [m]
Description
Operation
Affected flag(s)

DECA [m]
Description

Operation
Affected flag(s)

Rev. 1.00 74 October 27, 2011 Rev. 1.00 75 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Enter power down mode
This instruction stops the program execution and turns off the system clock. The
contents of the Data Memory and registers are retained. The WDT and prescaler
are cleared. The power down flag PDF is set and the WDT time-out flag TO is
cleared.
TO ← 0
PDF ← 0
TO, PDF

Increment Data Memory
Data in the specified Data Memory is incremented by 1.
[m] ← [m]+1
Z

Increment Data Memory with result in ACC
Data in the specified Data Memory is incremented by 1. The result is stored in the
Accumulator. The contents of the Data Memory remain unchanged.
ACC ← [m]+1
Z

Jump unconditionally
The contents of the Program Counter are replaced with the specified address.
Program execution then continues from this new address. As this requires the
insertion of a dummy instruction while the new address is loaded, it is a two cycle
instruction.
Program Counter ← addr
None

Move Data Memory to ACC
The contents of the specified Data Memory are copied to the Accumulator.
ACC ← [m]
None

Move immediate data to ACC
The immediate data specified is loaded into the Accumulator.
ACC ← x
None

Move ACC to Data Memory
The contents of the Accumulator are copied to the specified Data Memory.
[m] ← ACC
None

No operation
No operation is performed. Execution continues with the next instruction.
No operation
None

HALT
Description

Operation

Affected flag(s)

INC [m]
Description
Operation
Affected flag(s)

INCA [m]
Description

Operation
Affected flag(s)

JMP addr
Description

Operation
Affected flag(s)

MOV A,[m]
Description
Operation
Affected flag(s)

MOV A,x
Description
Operation
Affected flag(s)

MOV [m],A
Description
Operation
Affected flag(s)

NOP
Description
Operation
Affected flag(s)

Rev. 1.00 74 October 27, 2011 Rev. 1.00 75 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Logical OR Data Memory to ACC
Data in the Accumulator and the specified Data Memory perform a bitwise logical
OR operation. The result is stored in the Accumulator.
ACC ← ACC " OR" [m]
Z

Logical OR immediate data to ACC
Data in the Accumulator and the specified immediate data perform a bitwise
logical OR operation. The result is stored in the Accumulator.
ACC ← ACC " OR "	x
Z

Logical OR ACC to Data Memory
Data in the specified Data Memory and the Accumulator perform a bitwise logical
OR operation. The result is stored in the Data Memory.
[m] ← ACC " OR "	[m]
Z

Return from subroutine
The Program Counter is restored from the stack. Program execution continues at
the restored address.
Program Counter ← Stack
None

Return from subroutine and load immediate data to ACC
The Program Counter is restored from the stack and the Accumulator loaded
with the specified immediate data. Program execution continues at the restored
address.
Program Counter ← Stack
ACC ← x
None

Return from interrupt
The Program Counter is restored from the stack and the interrupts are re-enabled
by setting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt
was pending when the RETI instruction is executed, the pending Interrupt routine
will be processed before returning to the main program.
Program Counter ← Stack
EMI ← 1
None

Rotate Data Memory left
The contents of the specified Data Memory are rotated left by 1 bit with bit 7
rotated into bit 0.
[m].(i+1) ← [m].i; (i = 0~6)
[m].0 ← [m].7
None

OR A,[m]
Description

Operation
Affected flag(s)

OR A,x
Description

Operation
Affected flag(s)

ORM A,[m]
Description

Operation
Affected flag(s)

RET
Description

Operation
Affected flag(s)

RET A,x
Description

Operation

Affected flag(s)

RETI
Description

Operation

Affected flag(s)

RL [m]
Description

Operation

Affected flag(s)

Rev. 1.00 76 October 27, 2011 Rev. 1.00 77 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

.

Rotate Data Memory left with result in ACC
The contents of the specified Data Memory are rotated left by 1 bit with bit 7
rotated into bit 0. The rotated result is stored in the Accumulator and the contents
of the Data Memory remain unchanged.
ACC.(i+1) ← [m].i; (i = 0~6)
ACC.0 ← [m].7
None

Rotate Data Memory left through Carry
The contents of the specified Data Memory and the carry flag are rotated left by 1
bit. Bit 7 replaces the Carry bit and the original carry flag is rotated into bit 0.
[m].(i+1) ← [m].i; (i = 0~6)
[m].0 ← C
C ← [m].7
C

Rotate Data Memory left through Carry with result in ACC
Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit
7 replaces the Carry bit and the original carry flag is rotated into the bit 0. The
rotated result is stored in the Accumulator and the contents of the Data Memory
remain unchanged.
ACC.(i+1) ← [m].i; (i = 0~6)
ACC.0 ← C
C ← [m].7
C

Rotate Data Memory right
The contents of the specified Data Memory are rotated right by 1 bit with bit 0
rotated into bit 7.
[m].i ← [m].(i+1); (i = 0~6)
[m].7 ← [m].0
None

Rotate Data Memory right with result in ACC
Data in the specified Data Memory and the carry flag are rotated right by 1 bit
with bit 0 rotated into bit 7. The rotated result is stored in the Accumulator and the
contents of the Data Memory remain unchanged.
ACC.i ← [m].(i+1); (i = 0~6)
ACC.7 ← [m].0
None

Rotate Data Memory right through Carry
The contents of the specified Data Memory and the carry flag are rotated right by
1 bit. Bit 0 replaces the Carry bit and the original carry flag is rotated into bit 7.
[m].i ← [m].(i+1); (i = 0~6)
[m].7 ← C
C ← [m].0
C

RLA [m]
Description

Operation

Affected flag(s)

RLC [m]
Description

Operation

Affected flag(s)

RLCA [m]
Description

Operation

Affected flag(s)

RR [m]
Description

Operation

Affected flag(s)

RRA [m]
Description

Operation

Affected flag(s)

RRC [m]
Description

Operation

Affected flag(s)

Rev. 1.00 76 October 27, 2011 Rev. 1.00 77 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Rotate Data Memory right through Carry with result in ACC
Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit
0 replaces the Carry bit and the original carry flag is rotated into bit 7. The rotated
result is stored in the Accumulator and the contents of the Data Memory remain
unchanged.
ACC.i ← [m].(i+1); (i = 0~6)
ACC.7 ← C
C ← [m].0
C

Subtract Data Memory from ACC with Carry
The contents of the specified Data Memory and the complement of the carry flag
are subtracted from the Accumulator. The result is stored in the Accumulator. Note
that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise
if the result is positive or zero, the C flag will be set to 1.
ACC ← ACC ― [m] ― C
OV, Z, AC, C

Subtract Data Memory from ACC with Carry and result in Data Memory
The contents of the specified Data Memory and the complement of the carry flag
are subtracted from the Accumulator. The result is stored in the Data Memory. Note
that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise
if the result is positive or zero, the C flag will be set to 1.
ACC ← ACC ― [m] ― C
OV, Z, AC, C

Skip if decrement Data Memory is 0
The contents of the specified Data Memory are first decremented by 1. If the result
is 0 the following instruction is skipped. As this requires the insertion of a dummy
instruction while the next instruction is fetched, it is a two cycle instruction. If the
result is not 0 the program proceeds with the following instruction.
[m] ← [m] ― 1
Skip if [m] = 0
None

Skip if decrement Data Memory is zero with result in ACC
The contents of the specified Data Memory are first decremented by 1. If the result
is 0, the following instruction is skipped. The result is stored in the Accumulator
but the specified Data Memory contents remain unchanged. As this requires the
insertion of a dummy instruction while the next instruction is fetched, it is a two
cycle instruction. If the result is not 0, the program proceeds with the following
instruction.
ACC ← [m] ― 1
Skip if ACC = 0
None

RRCA [m]
Description

Operation

Affected flag(s)

SBC A,[m]
Description

Operation
Affected flag(s)

SBCM A,[m]
Description

Operation
Affected flag(s)

SDZ [m]
Description

Operation

Affected flag(s)

SDZA [m]
Description

Operation

Affected flag(s)

Rev. 1.00 78 October 27, 2011 Rev. 1.00 79 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Set Data Memory
Each bit of the specified Data Memory is set to 1.
[m] ← FFH
None

Set bit of Data Memory
Bit i of the specified Data Memory is set to 1.
[m].1 ← 1
None

Skip if increment Data Memory is 0
The contents of the specified Data Memory are first incremented by 1. If the result
is 0, the following instruction is skipped. As this requires the insertion of a dummy
instruction while the next instruction is fetched, it is a two cycle instruction. If the
result is not 0 the program proceeds with the following instruction.
[m] ← [m] + 1
Skip if [m] = 0
None

Skip if increment Data Memory is zero with result in ACC
The contents of the specified Data Memory are first incremented by 1. If the result
is 0, the following instruction is skipped. The result is stored in the Accumulator
but the specified Data Memory contents remain unchanged. As this requires the
insertion of a dummy instruction while the next instruction is fetched, it is a two
cycle instruction. If the result is not 0 the program proceeds with the following
instruction.
ACC ← [m] + 1
Skip if ACC = 0
None

Skip if bit i of Data Memory is not 0
If bit i of the specified Data Memory is not 0, the following instruction is skipped.
As this requires the insertion of a dummy instruction while the next instruction is
fetched, it is a two cycle instruction. If the result is 0 the program proceeds with
the following instruction.
Skip if [m].i ≠ 0
None

Subtract Data Memory from ACC
The specified Data Memory is subtracted from the contents of the Accumulator.
The result is stored in the Accumulator. Note that if the result of subtraction is
negative, the C flag will be cleared to 0, otherwise if the result is positive or zero,
the C flag will be set to 1.
ACC ← ACC ― [m]
OV, Z, AC, C

SET [m]
Description
Operation
Affected flag(s)

SET [m].i
Description
Operation
Affected flag(s)

SIZ [m]
Description

Operation

Affected flag(s)

SIZA [m]
Description

Operation

Affected flag(s)

SNZ [m].i
Description

Operation
Affected flag(s)

SUB A,[m]
Description

Operation
Affected flag(s)

Rev. 1.00 78 October 27, 2011 Rev. 1.00 79 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Subtract Data Memory from ACC with result in Data Memory
The specified Data Memory is subtracted from the contents of the Accumulator.
The result is stored in the Data Memory. Note that if the result of subtraction is
negative, the C flag will be cleared to 0, otherwise if the result is positive or zero,
the C flag will be set to 1.
[m] ← ACC ― [m]
OV, Z, AC, C

Subtract immediate data from ACC
The immediate data specified by the code is subtracted from the contents of the
Accumulator. The result is stored in the Accumulator. Note that if the result of
subtraction is negative, the C flag will be cleared to 0, otherwise if the result is
positive or zero, the C flag will be set to 1.

ACC ← ACC ― x
OV, Z, AC, C

Swap nibbles of Data Memory
The low-order and high-order nibbles of the specified Data Memory are
interchanged.
[m].3~[m].0↔[m].7 ~ [m].4
None

Swap nibbles of Data Memory with result in ACC
The low-order and high-order nibbles of the specified Data Memory are
interchanged. The result is stored in the Accumulator. The contents of the Data
Memory remain unchanged.
ACC.3 ~ ACC.0 ← [m].7 ~ [m].4
ACC.7 ~ ACC.4 ← [m].3 ~ [m].0
None

Skip if Data Memory is 0
If the contents of the specified Data Memory is 0, the following instruction is
skipped. As this requires the insertion of a dummy instruction while the next
instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
proceeds with the following instruction.
Skip if [m] = 0
None

Skip if Data Memory is 0 with data movement to ACC
The contents of the specified Data Memory are copied to the Accumulator. If the
value is zero, the following instruction is skipped. As this requires the insertion of a
dummy instruction while the next instruction is fetched, it is a two cycle instruction.
If the result is not 0 the program proceeds with the following instruction.
ACC ← [m]
Skip if [m] = 0
None

SUBM A,[m]
Description

Operation
Affected flag(s)

SUB A,x
Description

Operation
Affected flag(s)

SWAP [m]
Description

Operation
Affected flag(s)

SWAPA [m]
Description

Operation
Affected flag(s)

SZ [m]
Description

Operation
Affected flag(s)

SZA [m]
Description

Operation

Affected flag(s)

Rev. 1.00 80 October 27, 2011 Rev. 1.00 81 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Skip if bit i of Data Memory is 0
If bit i of the specified Data Memory is 0, the following instruction is skipped. As
this requires the insertion of a dummy instruction while the next instruction is
fetched, it is a two cycle instruction. If the result is not 0, the program proceeds
with the following instruction.
Skip if [m].i = 0
None

Read table (current page) to TBLH and Data Memory
The low byte of the program code (current page) addressed by the table pointer
(TBLP) is moved to the specified Data Memory and the high byte moved to TBLH.
[m] ← program code (low byte)
TBLH ← program code (high byte)
None

Move the ROM code (locate by TBLP and TBHP) to TBLH and data memory (ROM
code TBHP is enabled)
The low byte of ROM code addressed by the table pointers (TBLP and TBHP)
is moved to the specified data memory and the high byte transferred to TBLH
directly.
[m] ← program code (low byte)
TBLH ← program code (high byte)
None

Read table (last page) to TBLH and Data Memory
The low byte of the program code (last page) addressed by the table pointer (TBLP)
is moved to the specified Data Memory and the high byte moved to TBLH.
[m] ← program code (low byte)
TBLH ← program code (high byte)
None

Logical XOR Data Memory to ACC
Data in the Accumulator and the specified Data Memory perform a bitwise logical
XOR operation. The result is stored in the Accumulator.
ACC ← ACC " XOR" [m]
Z

Logical XOR ACC to Data Memory
Data in the specified Data Memory and the Accumulator perform a bitwise logical
XOR operation. The result is stored in the Data Memory.
[m] ← ACC " XOR" [m]
Z

Logical XOR immediate data to ACC
Data in the Accumulator and the specified immediate data perform a bitwise
logical XOR operation. The result is stored in the Accumulator.
ACC ← ACC " XOR" x
Z

SZ [m].i
Description

Operation
Affected flag(s)

TABRDC [m]
Description

Operation

Affected flag(s)

TABRDC [m]

Description

Operation

Affected flag(s)

TABRDL [m]
Description

Operation

Affected flag(s)

XOR A,[m]
Description

Operation
Affected flag(s)

XORM A,[m]
Description

Operation
Affected flag(s)

XOR A,x
Description

Operation
Affected flag(s)

Rev. 1.00 80 October 27, 2011 Rev. 1.00 81 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Package Information
Note	 that	 the	package	 information	provided	here	 is	 for	 consultation	purposes	only.	As	 this	
information	may	be	updated	at	regular	intervals	users	are	reminded	to	consult	 the	Holtek	website	
(http://www.holtek.com.tw/english/literature/package.pdf)	 for	 the	 latest	version	of	 the	package	
information.

16-pin NSOP (150mil) Outline Dimensions

� �

�

�

�

�

� �

�

�

� �

�
�

� �

MS-012

Symbol
Dimensions in inch

Min. Nom. Max.
A 0.228 ― 0.244
B 0.150 ― 0.157
C 0.012 ― 0.020
C׳ 0.386 ― 0.402
D ― ― 0.069
E ― 0.050 ―
F 0.004 ― 0.010
G 0.016 ― 0.050
H 0.007 ― 0.010
α 0° ― 8°

Symbol
Dimensions in mm

Min. Nom. Max.
A 5.79 ― 6.20
B 3.81 ― 3.99
C 0.30 ― 0.51
C׳ 9.80 ― 10.21
D ― ― 1.75
E ― 1.27 ―
F 0.10 ― 0.25
G 0.41 ― 1.27
H 0.18 ― 0.25
α 0° ― 8°

http://www.holtek.com.tw/english/literature/package.pdf

Rev. 1.00 82 October 27, 2011 Rev. 1.00 83 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

20-pin SSOP (150mil) Outline Dimensions

� �

�

� �

� �

� �

�

�

� �

� � �
�

�

Symbol
Dimensions in inch

Min. Nom. Max.
A 0.228 ― 0.244
B 0.150 ― 0.158
C 0.008 ― 0.012
C׳ 0.335 ― 0.347
D 0.049 ― 0.065
E ― 0.025 ―
F 0.004 ― 0.010
G 0.015 ― 0.050
H 0.007 ― 0.010
α 0° ― 8°

Symbol
Dimensions in mm

Min. Nom. Max.
A 5.79 ― 6.20
B 3.81 ― 4.01
C 0.20 ― 0.30
C׳ 8.51 ― 8.81
D 1.24 ― 1.65
E ― 0.64 ―
F 0.10 ― 0.25
G 0.38 ― 1.27
H 0.18 ― 0.25
α 0° ― 8°

Rev. 1.00 82 October 27, 2011 Rev. 1.00 83 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SAW Type 20-pin (4mm×4mm) QFN Outline Dimensions

�
�

�

� �
� �

�

� �

� �

�

�

�

�� �

� � � �

�

� �

� �

�

GTK

Symbol
Dimensions in inch

Min. Nom. Max.
A 0.031 ― 0.035

A1 0.000 0.001 0.002
A3 ― 0.008 ―
b 0.007 0.010 0.012
D ― 0.157 ―
E ― 0.157 ―
e ― 0.020 ―

D2 0.075 ― 0.081
E2 0.075 ― 0.081
L 0.012 0.016 0.020
K 0.008 ― ―

Symbol
Dimensions in mm

Min. Nom. Max.
A 0.80 ― 0.90

A1 0.00 0.02 0.05
A3 ― 0.203 ―
b 0.18 0.25 0.30
D ― 4.00 ―
E ― 4.00 ―
e ― 0.50 ―

D2 1.90 2.00 2.05
E2 1.90 2.00 2.05
L 0.30 0.40 0.50
K 0.20 ― ―

Rev. 1.00 84 October 27, 2011 Rev. 1.00 85 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Reel Dimensions

� ��

� �

� � �

16-pin NSOP(150mil)

Symbol Description Dimensions in mm
A Reel Outer Diameter 330.0±1.0
B Reel Inner Diameter 100.0±1.5
C Spindle Hole Diameter 13.0+0.5/-0.2

D Key Slit Width 2.0±0.5
T1 Space Between Flang 16.8+0.3/-0.2

T2 Reel Thickness 22.2±0.2

SSOP 20S (150mil)

Symbol Description Dimensions in mm
A Reel Outer Diameter 330.0±1.0
B Reel Inner Diameter 100.0±1.5
C Spindle Hole Diameter 13.0+0.5/-0.2

D Key Slit Width 2.0±0.5
T1 Space Between Flang 16.8+0.3/-0.2

T2 Reel Thickness 22.2±0.2

Rev. 1.00 84 October 27, 2011 Rev. 1.00 85 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Carrier Tape Dimensions

�� �

�

� �� ��

�

�

�

� �

� �

� �

�

� � � � � � � � � � � �
 � � � �
 	 � � � � � � � � � � � � � � �
� � � � � � � � � � 	 � �
 � � � � � � � � � � � � 	 � �

� � � � � � � � �

16-pin NSOP (150mil)

Symbol Description Dimensions in mm
W Carrier Tape Width 16.0±0.3
P Cavity Pitch 8.0±0.1
E Perforation Position 1.75±0.1
F Cavity to Perforation(Width Direction) 7.5±0.1
D Perforation Diameter 1.55+0.10/-0.00

D1 Cavity Hole Diameter 1.50+0.25/-0.00

P0 Perforation Pitch 4.0±0.1
P1 Cavity to Perforation(Length Direction) 2.0±0.1
A0 Cavity Length 6.5±0.1
B0 Cavity Width 10.3±0.1
K0 Cavity Depth 2.1±0.1
t Carrier Tape Thickness 0.30±0.05
C Cover Tape Width 13.3±0.1

SSOP 20S (150mil)

Symbol Description Dimensions in mm
W Carrier Tape Width 16.0+0.3/-0.1

P Cavity Pitch 8.0±0.1
E Perforation Position 1.75±0.10
F Cavity to Perforation(Width Direction) 7.5±0.1
D Perforation Diameter 1.5+0.1/-0.0

D1 Cavity Hole Diameter 1.50+0.25/-0.00

P0 Perforation Pitch 4.0±0.1
P1 Cavity to Perforation(Length Direction) 2.0±0.1
A0 Cavity Length 6.5±0.1
B0 Cavity Width 9.0±0.1
K0 Cavity Depth 2.3±0.1
t Carrier Tape Thickness 0.30±0.05
C Cover Tape Width 13.3±0.1

Rev. 1.00 86 October 27, 2011 Rev. 1.00 PB October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722

Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538, USA
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com

Copyright© 2011 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However,
Holtek assumes no responsibility arising from the use of the specifications described. The applications
mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or
representation that such applications will be suitable without further modification, nor recommends the use
of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's
products are not authorized for use as critical components in life support devices or systems. Holtek reserves
the right to alter its products without prior notification. For the most up-to-date information, please visit our
web site at http://www.holtek.com.tw.

	Features
	General Description
	Selection Table
	Block Diagram
	HT82B42R
	HT82B42RE

	Pin Assignment
	Pin Description
	Absolute Maximum Ratings
	D.C. Characteristics
	EEPROM Memory D.C. Characteristics
	A.C. Characteristics
	System Architecture
	Clocking and Pipelining
	Program Counter
	Stack
	Arithmetic and Logic Unit – ALU

	Program Memory
	Structure
	Special Vectors
	Look-up Table
	Table Program Example

	Data Memory
	Structure

	General Purpose Data Memory
	Special Function Registers
	Indirect Addressing Register – IAR0, IAR
	Memory Pointer – MP0, MP1
	Accumulator – ACC
	Program Counter Low Register – PCL
	Look-up Table Registers – TBLP, TBLH, TB
	Status Register – STATUS
	Bank Pointer – BP

	Input/Output Ports
	Pull-high Resistors
	Port A CMOS/NMOS/PMOS Structure
	Port A VDD/V33O Option Structure
	Port Pin Wake-up
	I/O Port Control Registers
	Pin-shared Functions
	Programming Considerations

	Timer/Event Counters
	Configuring the Timer/Event Counter Inpu
	Timer Register – TMR0, TMR1L/TMR1H
	Timer Control Register – TMR0C/TMR1C
	Configuring the Timer Mode
	Configuring the Event Counter Mode
	Configuring the Pulse Width Measurement
	I/O Interfacing
	Programming Considerations
	Timer Program Example

	Interrupts
	Interrupt Registers
	Interrupt Operation
	Interrupt Priority
	Timer/Event Counter Interrupt
	Programming Considerations
	USB Interrupt
	Serial Interface Interrupt

	Reset and Initialisation
	Reset Functions
	Reset Initial Conditions

	Oscillator
	Watchdog Timer Oscillator

	Power Down Mode and Wake-up
	Power Down Mode
	Entering the Power Down Mode
	Standby Current Considerations
	Wake-up

	Watchdog Timer
	USB Interface
	Suspend Wake-Up and Remote Wake-Up
	To Configure as PS2 Device
	USB Control Registers
	STALL and PIPE, PIPE_CTRL, Endpt_EN Regi

	Serial Interface – SPI
	SPI Interface Operation
	SPI Registers
	SPI Communication
	SPI Bus Enable/Disable
	SPI Operation
	Error Detection

	Configuration Options
	Application Circuit
	Instruction Set
	Introduction
	Instruction Timing
	Moving and Transferring Data
	Arithmetic Operations
	Logical and Rotate Operations
	Branches and Control Transfer
	Bit Operations
	Table Read Operations
	Other Operations

	Instruction Set Summary
	Package Information
	16-pin NSOP (150mil) Outline Dimensions
	20-pin SSOP (150mil) Outline Dimensions
	SAW Type 20-pin (4mm×4mm) QFN Outline Di
	Reel Dimensions
	Carrier Tape Dimensions

