
I/O MCU with USB Interface

HT82B42R/HT82B42RE

Revision: V.1.00 Date: October 27, 2011

Rev. 1.00	 2 October 27, 2011 Rev. 1.00	 3 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Table of Contents

Features... 5
General Description.. 5
Selection Table.. 6
Block Diagram... 6

HT82B42R... 6
HT82B42RE... 7

Pin Assignment... 8
Pin Description... 9
Absolute Maximum Ratings..11
D.C. Characteristics...11
EEPROM Memory D.C. Characteristics.. 12
A.C. Characteristics.. 12
System Architecture... 13

Clocking and Pipelining.. 13
Program Counter.. 13
Stack.. 15
Arithmetic and Logic Unit – ALU.. 15

Program Memory.. 16
Structure... 16
Special Vectors.. 17
Look-up Table... 18
Table Program Example... 19

Data Memory... 20
Structure... 20

General Purpose Data Memory... 20
Special Function Registers.. 21

Indirect Addressing Register – IAR0, IAR1.. 21
Memory Pointer – MP0, MP1... 22
Accumulator – ACC.. 22
Program Counter Low Register – PCL... 22
Look-up Table Registers – TBLP, TBLH, TBHP... 23
Status Register – STATUS... 23
Bank Pointer – BP.. 24

Input/Output Ports.. 25
Pull-high Resistors... 25
Port A CMOS/NMOS/PMOS Structure... 25
Port A VDD/V33O Option Structure.. 25
Port Pin Wake-up... 25
I/O Port Control Registers.. 26

Rev. 1.00	 2 October 27, 2011 Rev. 1.00	 3 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Pin-shared Functions... 26
Programming Considerations... 28

Timer/Event Counters.. 28
Configuring the Timer/Event Counter Input Clock Source... 29
Timer Register – TMR0, TMR1L/TMR1H... 29
Timer Control Register – TMR0C/TMR1C... 30
Configuring the Timer Mode... 32
Configuring the Event Counter Mode... 32
Configuring the Pulse Width Measurement Mode.. 33
I/O Interfacing... 34
Programming Considerations... 34
Timer Program Example.. 35

Interrupts... 36
Interrupt Registers.. 36
Interrupt Operation... 37
Interrupt Priority.. 38
Timer/Event Counter Interrupt.. 38
Programming Considerations... 38
USB Interrupt... 39
Serial Interface Interrupt... 39

Reset and Initialisation... 39
Reset Functions... 40
Reset Initial Conditions.. 42

Oscillator... 44
Watchdog Timer Oscillator... 44

Power Down Mode and Wake-up... 44
Power Down Mode... 44
Entering the Power Down Mode.. 44
Standby Current Considerations.. 45
Wake-up... 45

Watchdog Timer.. 46
USB Interface.. 47

Suspend Wake-Up and Remote Wake-Up... 47
To Configure as PS2 Device.. 48
USB Control Registers... 48
STALL and PIPE, PIPE_CTRL, Endpt_EN Registers.. 51

Serial Interface – SPI ... 57
SPI Interface Operation.. 57
SPI Registers... 58
SPI Communication... 61
SPI Bus Enable/Disable... 63
SPI Operation... 64
Error Detection... 65

Rev. 1.00	 4 October 27, 2011 Rev. 1.00	 5 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Configuration Options.. 66
Application Circuit.. 66
Instruction Set... 67

Introduction.. 67
Instruction Timing... 67
Moving and Transferring Data.. 67
Arithmetic Operations... 67
Logical and Rotate Operations... 68
Branches and Control Transfer.. 68
Bit Operations.. 68
Table Read Operations.. 68
Other Operations.. 68
Instruction Set Summary.. 69

Instruction Definition.. 71
Package Information.. 81

16-pin NSOP (150mil) Outline Dimensions.. 81
20-pin SSOP (150mil) Outline Dimensions.. 82
SAW Type 20-pin (4mm×4mm) QFN Outline Dimensions... 83
Reel Dimensions.. 84
Carrier Tape Dimensions.. 85

Rev. 1.00	 4 October 27, 2011 Rev. 1.00	 5 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Features
•	 Operating voltage:

fSYS=6M/12MHz: 3.3V~5.5V

•	 Fully integrated 6MHz or 12MHz oscillator

•	 4096×15 program memory

•	 160×8 data memory RAM

•	 EEPROM Memory: 128×8 (For HT82B42RE only)

•	 USB 2.0 low speed function

•	 PS2 and USB modes supported

•	 3 endpoints supported – endpoint 0 included

•	 Integrated 1.5kΩ resistor between V33O and UDN pins for USB applications

•	 Internal Regulator with 3.3V output

•	 8-level subroutine nesting

•	 15 bidirectional I/O lines (max.)

•	 8-bit programmable timer/event counter with overflow interrupt

•	 16-bit programmable timer/event counter with overflow interrupt

•	 Watchdog Timer

•	 Serial SPI Interface

•	 All I/O pins have wake-up functions

•	 Power-down function and wake-up feature reduce power consumption

•	 Up to 0.33μs instruction cycle with 12MHz system clock at VDD=5V

•	 Bit manipulation instruction

•	 15-bit table read instruction

•	 63 powerful instructions

•	 All instructions in one or two machine cycles

•	 Low voltage reset function

•	 16-pin NSOP, 20-pin SSOP and 20-pin QFN packages

General Description
The HT82B42R is 8-bit high performance, RISC architecture microcontroller devices specifically
designed for multiple I/O control product applications. In addition, the HT82B42RE is embedded
with an EEPROM device.

The advantages of low power consumption, I/O flexibility, timer functions, integrated USB
interface, serial SPI interface, Power Down and wake-up functions, Watchdog timer etc., make the
devices extremely suitable for use in computer peripheral product applications as well as many other
applications such as industrial control, consumer products, subsystem controllers, etc..

EEPROM memory is incorporated into the HT82B42RE, which is useful for applications that
require an area of non-volatile memory, perhaps to store information such as calibration parameters,
part numbers etc.. Most features are common to the HT82B42R, however, they differ in the
provision of an EEPROM.

Rev. 1.00	 6 October 27, 2011 Rev. 1.00	 7 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Selection Table
Most features are common to all devices, the main feature distinguishing them is EEPROM. The
following table summarizes the main features of each device.

Part No. VDD Program
Memory

Data
Memory

Data
EEPROM I/O

Timer End-
Points

HIRC
(MHz)

LDO
70mA

I/O VDD
Option SPI Stack Package

8-bit 16-bit

HT82B42R 3.3V~
5.5V 4k×15 160×8 ― 15 1 1 3 6/12 √ √ √ 8

16NSOP
20SSOP
20QFN

HT82B42RE 3.3V~
5.5V 4k×15 160×8 128x8 13 1 1 3 6/12 √ √ √ 8 20QFN

Block Diagram

HT82B42R

� � � �
� � � � � �

� � �
� � � � � � � �

� � � � �
 � �
�
 � � �

� � � � � � �
� � � � � �

	 � �
 �
� � � �
� � �
� � � �

� � � � �
 � �
�
 � � � � � � �
 � � � � � �

� � � � �
�
 � � �
 �

� � � � � � � � �
� � � � � � � � � �

� � � � � � � �
� � � � � �
 � � � � � �

� � �
� � � � � � �
� � � � �

� � �

� �

� � � � ­

� � � �
 �
�
 � � �

	 � �
 �
�
 � � �

Rev. 1.00	 6 October 27, 2011 Rev. 1.00	 7 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

The following block diagrams illustrate the dual-chip structure of the devices, where an individual
MCU with EEPROM devices are combined into a single package.

HT2201

VDDP

VSSP

HT82B42R

SDA

SCL

USB pins

RES

TMR pins

SPI

I/O ports
VDD

VSS

VDD

VSS

PE0

PE1

HT82B42RE

×

Rev. 1.00	 8 October 27, 2011 Rev. 1.00	 9 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Pin Assignment

VDD
V33O

UDN/DATA
UDP/CLK

PE0

PA7/TMR1
PA6/TMR0
PA5
PA4/SCS
PA3/SCK

16
15
14
13

12
11

1
2
3
4
5
6
7
8 9

10
PE1

VSS
PE2/RES

PA0
PA1/SDI
PA2/SDO

HT82B42R
16 NSOP-A

PB2
PB3VDD

V33O
UDN/DATA

UDP/CLK
VSS

PB1
PB0

PA7/TMR1
PA6/TMR0 PA5

PA4/SCS

PA3/SCK

20
19
18
17
16
15
14
13

12
11

1
2
3
4
5
6
7
8

9
10

PE2/RES
PE0
PE1 PA0

PA1/SDI
PA2/SDO

6 7 8 9 10

1617181920
1
2
3
4
5

15
14
13
12
11

PB3

PE2/RES

V
D

D

V33O
UDN/DATA

UDP/CLK
VSS

P
A

5

P
E

1
P

A
0

P
A

1/S
D

I
P

A
6/TM

R
0

P
A

2/S
D

O

P
E

0

PA3/SCK

P
A

4/S
C

S

P
A

7/TM
R

1

PB0
PB1
PB2

HT82B42R
20 SSOP-A

HT82B42R
20 QFN-A

6 7 8 9 10

1617181920
1
2
3
4
5

15
14
13
12
11

PB3

PE2/RES

V
D

D

V33O
UDN/DATA

UDP/CLK
VSS

P
A

5

P
E

1/S
C

L
P

A
0

P
A

1/S
D

I
P

A
6/TM

R
0

P
A

2/S
D

O

P
E

0/S
D

A

PA3/SCK

P
A

4/S
C

S

P
A

7/TM
R

1

PB0
PB1
PB2

HT82B42RE
20 QFN-A

Rev. 1.00	 8 October 27, 2011 Rev. 1.00	 9 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Pin Description
The pins on this device can be referenced by their Port name, e.g. PA.0, PA.1 etc., which refer to the
digital I/O function of the pins. However these Port pins are also shared with other function such as
the Timers, Serial Port pins etc.. The function of each pin is listed in the following table, however
the details behind how each pin is configured is contained in other sections of the datasheet.

HT82B42R

Pin Name Function OPT I/T O/T Description

PA0 PA0 CO ST
NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

PA1/SDI
PA1 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SDI ― ST ― SPI Data input

PA2/SDO
PA2 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SDO ― ― CMOS SPI Data output

PA3/SCK
PA3 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SCK ― ST CMOS SPI Serial Clock

PA4/SCS
PA4 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SCS ― ST ― SPI Slave select

PA5 PA5 CO ST
NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
output structure and VDD or 3.3V voltage output. The output
structure can be selected as CMOS, NMOS or PMOS.

PA6/TMR0
PA6 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
output structure and VDD or 3.3V voltage output. The output
structure can be selected as CMOS, NMOS or PMOS.

TMR0 ― ST ― Timer 0 External input

PA7/TMR1
PA7 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
output structure and VDD or 3.3V voltage output. The output
structure can be selected as CMOS, NMOS or PMOS.

TMR1 ― ST ― Timer 1 External input
PB0~PB3 PB0~PB3 CO ST CMOS General purpose I/O. Configuration option enabled pull-up and wake-up.
PE0~PE1 PE0~PE1 CO ST CMOS General purpose I/O. Configuration option enabled pull-up and wake-up.

PE2/RES
PE2 CO ST NMOS General purpose I/O. Configuration option wake-up.
RES CO ST ― Reset input

UDN/DATA
UDN ― ST CMOS USB D- line
DATA ― ST NMOS PS2 Data line

UDP/CLK
UDP ― ST CMOS USB D+ line
CLK ― ST NMOS PS2 CLK line

VDD VDD ― PWR ― Power supply
VSS VSS ― PWR ― Ground
V33O V33O ― ― PWR 3.3V regulator output

Rev. 1.00	 10 October 27, 2011 Rev. 1.00	 11 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

HT82B42RE
Pin Name Function OPT I/T O/T Description

PA0 PA0 CO ST
NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

PA1/SDI
PA1 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SDI ― ST ― SPI Data input

PA2/SDO
PA2 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SDO ― ― CMOS SPI Data output

PA3/SCK
PA3 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SCK ― ST CMOS SPI Serial Clock

PA4/SCS
PA4 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

SCS ― ST ― SPI Slave select

PA5 PA5 CO ST
NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

PA6/TMR0
PA6 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

TMR0 ― ST ― Timer 0 External input

PA7/TMR1
PA7 CO ST

NMOS
/CMOS
/PMOS

General purpose I/O. Configuration option enabled pull-up, wake-up,
VDD or 3.3V voltage output and output structure, which can be
selected as CMOS, NMOS or PMOS.

TMR1 ― ST ― Timer 1 External input
PB0~PB3 PB0~PB3 CO ST CMOS General purpose I/O. Configuration option enabled pull-up and wake-up.

PE0/SDA
PE0 CO ST CMOS General purpose I/O. Configuration option enabled pull-up and wake-up.
SDA ― ― ― Internal serial data input/output signal

PE1/SCL
PE1 CO ST CMOS General purpose I/O. Configuration option enabled pull-up and wake-up.
SCL ― ― ― Serial clock input signal

PE2/RES
PE2 CO ST NMOS General purpose I/O. Configuration option wake-up.
RES CO ST ― Reset input

UDN/DATA
UDN ― ST CMOS USB D- line
DATA ― ST NMOS PS2 Data line

UDP/CLK
UDP ― ST CMOS USB D+ line
CLK ― ST NMOS PS2 CLK line

VDD VDD ― PWR ― Power supply
VSS VSS ― PWR ― Ground
V33O V33O ― ― PWR 3.3V regulator output

Note: I/T: Input type; 	 	 O/T: Output type
OPT: Optional by configuration option (CO) or register option
PWR: Power; 	 	 CO: Configuration option
ST: Schmitt Trigger input; 	 CMOS: CMOS output;

Where devices exist in more than one package type the table reflects the situation for the package with the
largest number of pins. For this reason not all pins described in the table may exist on all package types.

Rev. 1.00	 10 October 27, 2011 Rev. 1.00	 11 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Absolute Maximum Ratings
Supply Voltage...VSS−0.3V to VSS+6.0V	
Input Voltage...VSS−0.3V to VDD+0.3V	
Storage Temperature.. -50°C to 125°C	
Operating Temperature.. -40°C to 85°C	
IOH Total...-100mA	
IOL Total.. 150mA	
Total Power Dissipation ... 500mW	

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum
Ratings" may cause substantial damage to the device. Functional operation of this device at other
conditions beyond those listed in the specification is not implied and prolonged exposure to extreme
conditions may affect device reliability.

D.C. Characteristics
Ta=25°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD
Operating Voltage
(Integrated oscillator) — fSYS=6MHz or 12MHz 3.3 — 5.5 V

IDD Operating Current 5V
No load, fSYS=6MHz — 6.5 12 mA
No load, fSYS=12MHz — 7.5 16 mA

ISTB

Standby Current

5V

No load,
system USB suspend,
set CLK_adj [22H] "*"

— — 400 μA

Standby Current (WDT Enabled)
No load, system HALT,
input/output mode,
set SUSP2 & CLK_adj [22H]

— — 15 μA

VIL

Input Low Voltage for PA
5V where VDDIO=VDD or V33O

by option for port A

0 — 0.2VDDIO V
Input Low Voltage for PB, PE 0 — 0.2VDD V
Input Low Voltage for RES pin 0 — 0.4VDD V

VIH

Input High Voltage for PA
5V where VDDIO=VDD or V33O

by option for Port A

0.8VDDIO — 5 V
Input High Voltage for PB, PE 0.8VDD — 5 V
Input High Voltage for RES pin 0.9VDD — VDD V

VLVR Low Voltage Reset 5V — 2.0 2.6 3.2 V
VV33O 3.3V Regulator Output for USB SIE 5V IV33O=70mA 3.0 3.3 3.6 V

IOH
Output Source Current for I/O Pin PA,
PB, PE0~1 5V VOH=3.4V -2 -4 — mA

IOL1
Output Sink Current for I/O Pin PA, PB,
PE0~1 5V VOL=0.4V 2 4 — mA

IOL2 Output Sink Current for PE2 5V VOL=0.1VDD 2 3 — mA

RPH
Pull-high Resistance for CLK, DATA

5V —
— 4.7 — kΩ

Pull-high Resistance for PA, PB, PE0~1 20 50 70 kΩ

Note: "*" include 15kΩ loading on the UDP, UDN lines at the host terminal.

Rev. 1.00	 12 October 27, 2011 Rev. 1.00	 13 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

EEPROM Memory D.C. Characteristics
Ta=40°C~85°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDDP Condition

VCC Operating Voltage — — 2.2 — 5.5 V

ICC1* Operating Current 5V Read at 100kHz — — 2 mA

ICC2* Operating Current 5V Write at 100kHz — — 5 mA

ISTB1* Standby Current 5V VIN=0 or VDDP — — 4 μA

ISTB2* Standby Current 2.4V VIN=0 or VDDP — — 3 μA

VIL Input Low Voltage — — -1 — 0.3VDDP V

VIH Input High Voltage — — 0.7VDDP — VDDP+0.5 V

VOL Output Low Voltage 2.4V IOL=2.1mA — — 0.4 V

ILI Input Leakage Current 5V VIN=0 or VDDP — — 1 μA

ILO Output Leakage Current 5V VOUT=0 or VDDP — — 1 μA

Note: *: The operating current ICC1 and ICC2 listed here are the additional currents consumed when the EEPROM
Memory operates in Read Operation and Write Operation respectively. If the EEPROM is operating, the ICC1
or ICC2 should be added to calculated the relevant operating current of the device for defferent conditions.
To calculate the standby current for the whole device, the standby current shown above should also be taken
into account.

A.C. Characteristics
Ta=25°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fRCSYS RC Clock with 8-bit Prescaler Register 5V — — 32 — kHz

tWDT Watchdog Time-out Period (System Clock) — — 1024 — — 1/fRCSYS

tUSB UDP, UDN Rising & Falling Time — — 75 — 300 ns

tOST Oscillation Start-up Timer Period — — — 1024 — tSYS

tOSCsetup Crystal Setup — — — 5 — ms

fINO125V Internal Oscillator Frequency for 12MHz 4.0V~5.5V — 10.80 12.00 13.20 MHz

fINO123V Internal Oscillator Frequency for 12MHz 3.0V~4.0V — 10.56 12.00 13.44 MHz

fINOUSB Internal Oscillator Frequency with USB Mode 4.2V~5.5V — 11.82 12.00 12.18 MHz

Note: tSYS=1/fSYS
Power_on period=tWDT+tOST+tOSCsetup
WDT Time_out in Normal Mode=1/fRCSYS×256×WDTS+tWDT

WDT Time_out in Power Down Mode=1/fRCSYS×256×WDTS+tOST+tOSCsetup
Trimmed for 5V operation using factory trim values. Frequency Trim to 12MHz±3%

Rev. 1.00	 12 October 27, 2011 Rev. 1.00	 13 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

System Architecture
A key factor in the high-performance features of the Holtek range of microcontrollers is attributed
to the internal system architecture. The range of devices take advantage of the usual features found
within RISC microcontrollers providing increased speed of operation and enhanced performance.
The pipelining scheme is implemented in such a way that instruction fetching and instruction
execution are overlapped, hence instructions are effectively executed in one cycle, with the
exception of branch or call instructions. An 8-bit wide ALU is used in practically all operations
of the instruction set. It carries out arithmetic operations, logic operations, rotation, increment,
decrement, branch decisions, etc.. The internal data path is simplified by moving data through the
Accumulator and the ALU. Certain internal registers are implemented in the Data Memory and
can be directly or indirectly addressed. The simple addressing methods of these registers along
with additional architectural features ensure that a minimum of external components is required to
provide a functional I/O and A/D control system with maximum reliability and flexibility.

Clocking and Pipelining
The system clock is derived from an internal oscillator and is subdivided into four internally
generated non-overlapping clocks, T1~T4. The Program Counter is incremented at the beginning
of the T1 clock during which time a new instruction is fetched. The remaining T2~T4 clocks carry
out the decoding and execution functions. In this way, one T1~T4 clock cycle forms one instruction
cycle. Although the fetching and execution of instructions takes place in consecutive instruction
cycles, the pipelining structure of the microcontroller ensures that instructions are effectively
executed in one instruction cycle. The exception to this are instructions where the contents of the
Program Counter are changed, such as subroutine calls or jumps, in which case the instruction will
take one more instruction cycle to execute.

For instructions involving branches, such as jump or call instructions, two machine cycles are
required to complete instruction execution. An extra cycle is required as the program takes one
cycle to first obtain the actual jump or call address and then another cycle to actually execute the
branch. The requirement for this extra cycle should be taken into account by programmers in timing
sensitive applications.

Program Counter
During program execution, the Program Counter is used to keep track of the address of the next
instruction to be executed. It is automatically incremented by one each time an instruction is
executed except for instructions, such as "JMP" or "CALL" that demand a jump to a non-consecutive
Program Memory address. It must be noted that only the lower 8 bits, known as the Program
Counter Low Register, are directly addressable by user.

Rev. 1.00	 14 October 27, 2011 Rev. 1.00	 15 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � �
 �

� �
� � � � � � � � � � � � � � � � � �
 �

� � � � �
 � � � �

 � � 	 � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� 	 � � � 	 � 	 � �

System Clocking and Pipelining

� �
� � � � � � � � � � � � �

� � � � � � � �
 � � � � �

�
�
�
�

	 � � � � � �

� � � � � � � � � � �
� � � � � � � � � �
� � � � � � � � �
�
�
� � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � 	 � � � � � � � � � � � � � � 	
� � � � � � � � � � � �

Instruction Fetching

When executing instructions requiring jumps to non-consecutive addresses such as a jump
instruction, a subroutine call, interrupt or reset, etc., the microcontroller manages program control
by loading the required address into the Program Counter. For conditional skip instructions, once
the condition has been met, the next instruction, which has already been fetched during the present
instruction execution, is discarded and a dummy cycle takes its place while the correct instruction is
obtained.

The lower byte of the Program Counter, known as the Program Counter Low register or PCL, is
available for program control and is a readable and writeable register. By transferring data directly
into this register, a short program jump can be executed directly, however, as only this low byte
is available for manipulation, the jumps are limited to the present page of memory, that is 256
locations. When such program jumps are executed it should also be noted that a dummy cycle will
be inserted.

The lower byte of the Program Counter is fully accessible under program control. Manipulating the
PCL might cause program branching, so an extra cycle is needed to pre-fetch. Further information
on the PCL register can be found in the Special Function Register section.

Rev. 1.00	 14 October 27, 2011 Rev. 1.00	 15 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Stack
This is a special part of the memory which is used to save the contents of the Program Counter
only. The stack has 8 levels and is neither part of the data nor part of the program space, and is
neither readable nor writeable. The activated level is indexed by the Stack Pointer, SP, and is
neither readable nor writeable. At a subroutine call or interrupt acknowledge signal, the contents of
the Program Counter are pushed onto the stack. At the end of a subroutine or an interrupt routine,
signaled by a return instruction, RET or RETI, the Program Counter is restored to its previous value
from the stack. After a device reset, the Stack Pointer will point to the top of the stack.

If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded but
the acknowledge signal will be inhibited. When the Stack Pointer is decremented, by RET or RETI,
the interrupt will be serviced. This feature prevents stack overflow allowing the programmer to use
the structure more easily. However, when the stack is full, a CALL subroutine instruction can still
be executed which will result in a stack overflow. Precautions should be taken to avoid such cases
which might cause unpredictable program branching.

� � � � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � �
	 � � � � �

� � � � � � � � � � � �

� � � � �
� � � � � � �

� � � � � � � � � � � � � � �

Arithmetic and Logic Unit – ALU
The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic
and logic operations of the instruction set. Connected to the main microcontroller data bus, the ALU
receives related instruction codes and performs the required arithmetic or logical operations after
which the result will be placed in the specified register. As these ALU calculation or operations may
result in carry, borrow or other status changes, the status register will be correspondingly updated to
reflect these changes. The ALU supports the following functions:

•	 Arithmetic operations: ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA

•	 Logic operations: AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA

•	 Rotation: RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC

•	 Increment and Decrement: INCA, INC, DECA, DEC

•	 Branch decision: JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI

Rev. 1.00	 16 October 27, 2011 Rev. 1.00	 17 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Mode
Program Counter Bits

*11~*8 *7 *6 *5 *4 *3 *2 *1 *0
Initial reset 0 0 0 0 0 0 0 0 0
USB interrupt 0 0 0 0 0 0 1 0 0
Timer/Event 0 Counter overflow 0 0 0 0 0 1 0 0 0
Timer/Event 1 Counter overflow 0 0 0 0 0 1 1 0 0
SPI interrupt 0 0 0 0 1 0 0 0 0
Skip Program Counter+2
Loading PCL @11~@8 @7 @6 @5 @4 @3 @2 @1 @0
Jump, call branch #11~#8 #7 #6 #5 #4 #3 #2 #1 #0
Return (RET, RETI) S11~S8 S7 S6 S5 S4 S3 S2 S1 S0

Program Counter

Note: PC11~PC8: Current Program Counter bits	 @7~@0: PCL bits 	
#11~#0: Instruction code address bits	 	 S11~S0: Stack register bits

Program Memory
The Program Memory is the location where the user code or program is stored. The
HT82B42R/HT82B42RE are One-Time Programmable, OTP, memory type devices where users
can program their application code into the devices. By using the appropriate programming tools,
OTP devices offer users the flexibility to freely develop their applications which may be useful
during debug or for products requiring frequent upgrades or program changes. OTP devices are also
applicable for use in applications that require low or medium volume production runs.

Structure
The Program Memory has a capacity of 4K by 15 bits. The Program Memory is addressed by the
Program Counter and also contains data, table information and interrupt entries. Table data, which
can be setup in any location within the Program Memory, is addressed by separate table pointer
registers.

� � � �
� � � � � � �

� � �
� � � � � � � � � �
 � � � � �

 � 	 � � � � � � � � � � � � � � � � � �
� � � � � � � � � �
 � � � � �

� � � �

� � � �

� � � �

� � � � � � � � � � � � � �

 � � � � �

� � � �

 � 	 � � � � � � � � � � � � � � � � � �
� � � � � � � � � �
 � � � � �

� � � � � � �
� � � � � � � � � �
 � � � � �

Program Memory Structure

Rev. 1.00	 16 October 27, 2011 Rev. 1.00	 17 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Special Vectors
Within the Program Memory, certain locations are reserved for special usage such as reset and
interrupts.

•	 Location 000H
This area is reserved for program initialization. After chip reset, the program always begins
execution at location 000H.

•	 Location 004H
This area is reserved for the USB interrupt service program. If the USB interrupt is activated,
the interrupt is enabled and the stack is not full, the program jumps to this location and begins
execution.

•	 Location 008H
This area is reserved for the Timer/Event Counter 0 interrupt service program. If a timer interrupt
results from a Timer/Event Counter 0 overflow, and if the interrupt is enabled and the stack is not
full, the program jumps to this location and begins execution.

•	 Location 00CH
This area is reserved for the Timer/Event Counter 1 interrupt service program. If a timer interrupt
results from a Timer/Event Counter 1 overflow, and the interrupt is enabled and the stack is not
full, the program jumps to this location and begins execution.

•	 Location 010H
This area is reserved for the SPI interrupt service program. If a SPI interrupt results from a byte
of data has been transmitted or received by the SPI interface, and the interrupt is enabled and the
stack is not full, the program jumps to this location and begins execution.

•	 Table location
Any location in the program memory can be used as look-up tables. There are three methods to
read the Program Memory data using two table read instructions: "TABRDC" and "TABRDL",
transfer the contents of the lower-order byte to the specified data memory, and the higher-order
byte to TBLH (08H).
The three methods are shown as follows:
♦♦ Using the instruction "TABRDC [m]" for the current Program Memory page, where one page=
256words, where the table location is defined by TBLP in the current page. This is where the
configuration option has disabled the TBHP register.

♦♦ Using the instruction "TABRDC [m]", where the table location is defined by registers TBLP
and TBHP. Here the configuration option has enabled the TBHP register.

♦♦ Using the instruction "TABRDL [m]", where the table location is defined by registers TBLP in
the last page which has the address range 0F00H~0FFFH.

Only the destination of the lower-order byte in the table is well-defined, the other bits of the table
word are transferred to the lower portion of TBLH, and the remaining 1-bit words are read as "0".
The Table Higher-order byte register (TBLH) is read only. The table pointers, TBLP and TBHP, are
read/write registers, which indicate the table location. Before accessing the the table, the locations
must be placed in the TBLP and TBHP registers (if the configuration option has disabled TBHP then
the value in TBHP has no effect). TBLH is read only and cannot be restored. If the main routine
and the ISR (Interrupt Service Routine) both employ the table read instruction, the contents of the
TBLH in the main routine are likely to be changed by the table read instruction used in the ISR and
errors can occur. Using the table read instruction in the main routine and the ISR simultaneously
should be avoided. However, if the table read instruction has to be applied in both the main routine
and the ISR, the interrupt should be disabled prior to the table read instruction. It will not be enabled
until the TBLH has been backed up. All table related instructions require two cycles to complete the

Rev. 1.00	 18 October 27, 2011 Rev. 1.00	 19 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

operation. These areas may function as normal program memory depending on the requirements.

Once TBHP is enabled, the instruction "TABRDC [m]" reads the Program Memory data as defined
by the TBLP and TBHP values. If the Program Memory code option has disabled TBHP, the
instruction "TABRDC [m]" reads the Program Memory data as defined by TBLP only in the current
Program Memory page.

Look-up Table
Any location within the Program Memory can be defined as a look-up table where programmers can
store fixed data. To use the look-up table, the table pointer must first be setup by placing the lower
order address of the look up data to be retrieved in the TBLP register and the higher order address in
the TBHP register. These two registers define the full address of the look-up table. Using the TBHP
must be selected by configuration option, if not used table data can still be accessed but only the
lower byte address in the current page or last page can be defined.

After setting up the table pointers, the table data can be retrieved from the current Program Memory
page or last Program Memory page using the "TABRDC [m]" or "TABRDL [m]" instructions,
respectively. When these instructions are executed, the lower order table byte from the Program
Memory will be transferred to the user defined Data Memory register [m] as specified in the
instruction. The higher order table data byte from the Program Memory will be transferred to the
TBLH special register. Any unused bits in this transferred higher order byte will be read as "0".

� � � � � � � �
� � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

 � � �

 � � � �
 � 	 � � � � � � � � � � � �

 �
 �

Table Read – TBLP only

� � � � � � � �
� � � � � �

� � � � � � � � �
 � � � � � � �
 � 	
� � � � � � � � � � �
 �
 � � � � � � � � � � � � � � �

� � � �

� � � �

Table Read – TBLP/TBHP

Instruction
Table Location Bits

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
TABRDC [m] PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0
TABRDL [m] 1 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Table Location

Note: PC11~PC8: Current Program Counter bits. TBHP register Bit3~0 when TBHP is enabled.	
@7~@0: Table Pointer TBLP bits

Table High Byte Pointer for Current Table Read TBHP (Address 0X1F)

Register Bits Read/Write Functions
TBHP(0X1F) 3~0 R/W Store current table read bit11~bit8 data

Rev. 1.00	 18 October 27, 2011 Rev. 1.00	 19 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Table Program Example
The following example shows how the table pointer and table data is defined and retrieved from
the microcontroller. This example uses raw table data located in the last page which is stored there
using the ORG statement. The value at this ORG statement is "F00H" which refers to the start
address of the last page within the 4K Program Memory of device. The table pointer is setup here
to have an initial value of "06H". This will ensure that the first data read from the data table will be
at the Program Memory address "F06H" or 6 locations after the start of the last page. Note that the
value for the table pointer is referenced to the first address of the present page if the "TABRDC [m]"
instruction is being used. The high byte of the table data which in this case is equal to zero will be
transferred to the TBLH register automatically when the "TABRDL [m]" instruction is executed.

tempreg1	 db	 ?	 ; temporary register #1
tempreg2	 db	 ?	 ; temporary register #2
:
:
mov a,06h			 ; initialise table pointer-note that this
				 ; address is referenced
mov tblp,a			 ; to the last page or present page
:
:
tabrdl	 tempreg1	 ; transfers value in table referenced by table
				 ; pointer to tempregl data at prog. memory
				 ; address "F06H" transferred to tempreg1 and TBLH
dec tblp			 ; reduce value of table pointer by one
tabrdl	 tempreg2	 ; transfers value in table referenced by table
				 ; pointer to tempreg2 data at prog. memory
				 ; address "F05H" transferred to tempreg2 and TBLH
				 ; in this example the data "1AH" is transferred
				 ; to tempreg1 and data "0FH" to register tempreg2
				 ; the value "00H" will be transferred to the high
				 ; byte register TBLH
:
:
org F00h			 ; sets initial address of last page
dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:
:

Because the TBLH register is a read-only register and cannot be restored, care should be taken
to ensure its protection if both the main routine and Interrupt Service Routine use the table read
instructions. If using the table read instructions, the Interrupt Service Routines may change the
value of TBLH and subsequently cause errors if used again by the main routine. As a rule it is
recommended that simultaneous use of the table read instructions should be avoided. However, in
situations where simultaneous use cannot be avoided, the interrupts should be disabled prior to the
execution of any main routine table-read instructions. Note that all table related instructions require
two instruction cycles to complete their operation.

Rev. 1.00	 20 October 27, 2011 Rev. 1.00	 21 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Data Memory
The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where
temporary information is stored. The data memory is divided into two banks, Bank0 and Bank1. The
Bank0 is subdivided into two sections; the first of these is an area of RAM where special function
registers are located. These registers have fixed locations and are necessary for correct operation of
the device. Many of these registers can be read from and written to directly under program control,
however, some remain protected from user manipulation. The second area of Data Memory is
reserved for general purpose use. In addition, the Bank1 is dedicated for the USB related registers.
All locations within this Data Memory are read and write accessible under program control.

Structure
The Data Memory is subdivided into two banks, all of which are implemented in 8-bit wide RAM.
The Data memory located in Bank0 is subdivided into two sections, the Special Purpose and General
Purpose Data Memory.

The start address of the Data Memory for all devices is the address “00H”. Registers which are
common to all microcontrollers, such as ACC, PCL, etc., have the same Data Memory address. The
USB control registers is mapped into Bank1.

General Purpose Data Memory
All microcontroller programs require an area of read/write memory where temporary data can be
stored and retrieved for use later. It is this area of RAM memory that is known as General Purpose
Data Memory. This area of Data Memory is fully accessible by the user program for both read and
write operations. By using the "SET [m].i" and "CLR [m].i" instructions, individual bits can be set
or reset under program control giving the user a large range of flexibility for bit manipulation in the
Data Memory.

01H

Bank1Bank0

25H

3FH
40H

: Unused, read as “00”

DFH

USB

IAR0

MP0

00H

4AH

Special
Purpose
Registers

General
Purpose
Registers

IAR0

MP0

Data Memory Structure

Note: Most of the Data Memory bits can be directly manipulated using the "SET [m].i" and
"CLR [m].i" with the exception of a few dedicated bits. The Data Memory can also be
accessed through the memory pointer register MP.

Rev. 1.00	 20 October 27, 2011 Rev. 1.00	 21 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

�

 � �
 	 � �
 � � � �
 � 	
 � � �

� � � �
� � �
� � � �
� � �
� �
� � �
� � �
� � � �
� � � �
� � � �

� � � � � �
� � � � �

� � � �
� � � � �
� � � � �
� � � � �
� � � � �

� �
� � �
� �
� � �

� �
� � �
� � � �

� � � � �
� � � �
� � �
� � �
� � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � � � � �
� � � � � � � �

� � �
� � � � �
� � � �
� � � �
� � � �

� � � � � � �
� � � ­ �
� � � ­ �
� � � ­ �

� � � � � � � � � �

Special Purpose Data Memory

Special Function Registers
To ensure successful operation of the microcontroller, certain internal registers are implemented in
the Data Memory area. These registers ensure correct operation of internal functions such as timers,
interrupts, etc., as well as external functions such as I/O data control. The location of these registers
within the Data Memory begins at the address 00H. Any unused Data Memory locations between
these special function registers and the point where the General Purpose Memory begins is reserved
and attempting to read data from these locations will return a value of 00H.

Indirect Addressing Register – IAR0, IAR1
The Indirect Addressing Registers, IAR0 and IAR1, although having their locations in normal RAM
register space, do not actually physically exist as normal registers. The method of indirect addressing
for RAM data manipulation uses these Indirect Addressing Registers and Memory Pointers, in
contrast to direct memory addressing, where the actual memory address is specified. Actions on the
IAR0 and IAR1 registers will result in no actual read or write operation to these registers but rather
to the memory location specified by their corresponding Memory Pointer, MP0 or MP1. Acting as
a pair, IAR0 and MP0 can together only access data from Bank 0, while the IAR1 and MP1 register
pair can access data from both Bank 0 and Bank 1. As the Indirect Addressing Registers are not
physically implemented, reading the Indirect Addressing Registers indirectly will return a result of
"00H" and writing to the registers indirectly will result in no operation.

Rev. 1.00	 22 October 27, 2011 Rev. 1.00	 23 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Memory Pointer – MP0, MP1
For all devices, two Memory Pointers, known as MP0 and MP1 are provided. These Memory
Pointers are physically implemented in the Data Memory and can be manipulated in the same way
as normal registers providing a convenient way with which to address and track data. When any
operation to the relevant Indirect Addressing Registers is carried out, the actual address that the
microcontroller is directed to, is the address specified by the related Memory Pointer. MP0 can only
access data in Bank 0 while MP1 can access both banks.

data .section "data"
adres1	 db ?
adres2	 db ?
adres3	 db ?
adres4	 db ?
block	 db ?
code .section at 0 "code"
org 00h
start:
mov a,04h			 ; setup size of block
mov block,a
mov a,offset adres1		 ; Accumulator loaded with first RAM address
mov mp0,a			 ; setup memory pointer with first RAM address
loop:
clr IAR0			 ; clear the data at address defined by MP0
inc mp0			 ; increment memory pointer
sdz block			 ; check if last memory location has been cleared
jmp loop
continue:

The important point to note here is that in the example shown above, no reference is made to specific
Data Memory addresses.

Accumulator – ACC
The Accumulator is central to the operation of any microcontroller and is closely related with
operations carried out by the ALU. The Accumulator is the place where all intermediate results
from the ALU are stored. Without the Accumulator it would be necessary to write the result of
each calculation or logical operation such as addition, subtraction, shift, etc., to the Data Memory
resulting in higher programming and timing overheads. Data transfer operations usually involve
the temporary storage function of the Accumulator; for example, when transferring data between
one user defined register and another, it is necessary to do this by passing the data through the
Accumulator as no direct transfer between two registers is permitted.

Program Counter Low Register – PCL
To provide additional program control functions, the low byte of the Program Counter is made
accessible to programmers by locating it within the Special Purpose area of the Data Memory. By
manipulating this register, direct jumps to other program locations are easily implemented. Loading
a value directly into this PCL register will cause a jump to the specified Program Memory location,
however, as the register is only 8-bit wide, only jumps within the current Program Memory page are
permitted. When such operations are used, note that a dummy cycle will be inserted.

Rev. 1.00	 22 October 27, 2011 Rev. 1.00	 23 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Look-up Table Registers – TBLP, TBLH, TBHP
These two special function registers are used to control operation of the look-up table which is stored
in the Program Memory. TBLP and TBHP are the table pointers and indicate the location where the
table data is located. Their value must be setup before any table read commands are executed. Their
values can be changed, for example using the "INC" or "DEC" instructions, allowing for easy table
data pointing and reading. TBLH is the location where the high order byte of the table data is stored
after a table read data instruction has been executed.

Status Register – STATUS
This 8-bit register contains the zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow flag
(OV), power down flag (PDF), and watchdog time-out flag (TO). These arithmetic/logical operation
and system management flags are used to record the status and operation of the microcontroller.

With the exception of the TO and PDF flags, bits in the status register can be altered by instructions
like most other registers. Any data written into the status register will not change the TO or PDF flag.
In addition, operations related to the status register may give different results due to the different
instruction operations. The TO flag can be affected only by a system power-up, a WDT time-out or
by executing the "CLR WDT" or "HALT" instruction. The PDF flag is affected only by executing
the "HALT" or "CLR WDT" instruction or during a system power-up.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

•	 C is set if an operation results in a carry during an addition operation or if a borrow does not take
place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate through
carry instruction.

•	 AC is set if an operation results in a carry out of the low nibbles in addition, or no borrow from
the high nibble into the low nibble in subtraction; otherwise AC is cleared.

•	 Z is set if the result of an arithmetic or logical operation is zero; otherwise Z is cleared.

•	 OV is set if an operation results in a carry into the highest-order bit but not a carry out of the
highest-order bit, or vice versa; otherwise OV is cleared.

•	 PDF is cleared by a system power-up or executing the "CLR WDT" instruction. PDF is set by
executing the "HALT" instruction.

•	 TO is cleared by a system power-up or executing the "CLR WDT" or "HALT" instruction. TO is
set by a WDT time-out.

In addition, on entering an interrupt sequence or executing a subroutine call, the status register will
not be pushed onto the stack automatically. If the contents of the status registers are important and if
the interrupt routine can change the status register, precautions must be taken to correctly save it.

Rev. 1.00	 24 October 27, 2011 Rev. 1.00	 25 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

STATUS Register

Bit 7 6 5 4 3 2 1 0
Name — — TO PDF OV Z AC C
R/W — — R R R/W R/W R/W R/W
POR — — 0 0 x x x x

“x” unknown
Bit 7, 6	 Unimplemented, read as “0”
Bit 5	 TO: Watchdog Time-Out flag

0: after power up or executing the “CLR WDT” or “HALT” instruction
1: a watchdog time-out occurred

Bit 4	 PDF: Power down flag
0: after power up or executing the “CLR WDT” instruction
1: by executing the “HALT” instruction

Bit 3	 OV: Overflow flag
0: no overflow
1: an operation results in a carry into the highest-order bit but not a carry out of the
highest-order bit or vice versa

Bit 2	 Z: Zero flag
0: the result of an arithmetic or logical operation is not zero
1: the result of an arithmetic or logical operation is zero

Bit 1	 AC: Auxiliary flag
0: no auxiliary carry
1: an operation results in a carry out of the low nibbles in addition, or no borrow
from the high nibble into the low nibble in subtraction

Bit 0	 C: Carry flag
0: no carry-out
1: an operation results in a carry during an addition operation or if a borrow does not
take place during a subtraction operation

C is also affected by a rotate through carry instruction.

Bank Pointer – BP
The Special Purpose Data Memory is divided into two Banks, Bank 0 and Bank 1. The USB control
registers are located in Bank 1, while all other registers are located in Bank 0. The Bank Pointer
selects which bank data is to be accessed from. If Bank 0 is to be accessed then BP must be set to a
value of 00H, while if Bank 1 is to be accessed then BP must be set to a value of 01H.

� � � � � � � � � � � �
� � � �

� � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

 � � � � � �
 	 �

Bank Pointer

Rev. 1.00	 24 October 27, 2011 Rev. 1.00	 25 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Input/Output Ports
Holtek microcontrollers offer considerable flexibility on their I/O ports. With the input or output
designation of every pin fully under user program control, pull-high options for all ports and
wake-up options on certain pins, the user is provided with an I/O structure to meet the needs of a
wide range of application possibilities.

Depending upon which package is chosen, the microcontroller provides up to 15 bidirectional
input/output lines labeled with port names PA, PB and PE.

These I/O ports are mapped to the Data Memory with addresses as shown in the Special Purpose
Data Memory table. For input operation, these ports are non-latching, which means the inputs must
be ready at the T2 rising edge of instruction "MOV A,[m]", where m denotes the port address. For
output operation, all the data is latched and remains unchanged until the output latch is rewritten.

Pull-high Resistors
Many product applications require pull-high resistors for their switch inputs usually requiring
the use of an external resistor. To eliminate the need for these external resistors, I/O pins, when
configured as an input have the capability of being connected to an internal pull-high resistor. The
pull-high resistors are selectable via configuration options and are implemented using weak PMOS
transistors. A pin or nibble option on the I/O ports can be selected to select pull-high Resistors.

Note that the PE2 is pin shared with reset pin, the I/O structure is NMOS open drain, and there is no
pull-high resistor for this pin.

Port A CMOS/NMOS/PMOS Structure
The pins on Port A can be setup via configuration option to be either CMOS, NMOS or PMOS
types.

Port A VDD/V33O Option Structure
The power supply for the Port A pins can be setup via configuration option to be either VDD or
V33O.

Port Pin Wake-up
If the HALT instruction is executed, the device will enter the Power Down Mode, where the system
clock will stop resulting in power being conserved, a feature that is important for battery and other
low-power applications. Various methods exist to wake-up the microcontroller, one of which is to
change the logic condition on one of the port pins from high to low. After a HALT instruction forces
the microcontroller into entering the Power Down Mode, the processor will remain in a low-power
state until the logic condition of the selected wake-up pin on the port pin changes from high to low.
This function is especially suitable for applications that can be woken up via external switches. Each
pin on PA, PB and PE has the capability to wake-up the device on an external falling edge. Note
that some pins can only be setup nibble wide whereas other can be bit selected to have a wake-up
function.

Rev. 1.00	 26 October 27, 2011 Rev. 1.00	 27 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

I/O Port Control Registers
Each I/O port has its own control register PAC, PBC and PEC, to control the input/output
configuration. With this control register, each CMOS output or input with or without pull-high
resistor structures can be reconfigured dynamically under software control. Each of the I/O ports is
directly mapped to a bit in its associated port control register. Note that several pins can be setup to
have NMOS outputs using configuration options.

For the I/O pin to function as an input, the corresponding bit of the control register must be written
as a "1". This will then allow the logic state of the input pin to be directly read by instructions. When
the corresponding bit of the control register is written as a "0", the I/O pin will be setup as an output.
If the pin is currently setup as an output, instructions can still be used to read the output register.
However, it should be noted that the program will in fact only read the status of the output data latch
and not the actual logic status of the output pin.

Pin-shared Functions
The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more
than one function. Limited numbers of pins can force serious design constraints on designers but by
supplying pins with multi-functions, many of these difficulties can be overcome. For some pins, the
chosen function of the multi-function I/O pins is set by configuration options while for others the
function is set by application program control.

•	 External Timer0 Clock Input
The external timer pin TMR0 is pin-shared with the I/O pin PA6. To configure this pin to operate
as timer input, the corresponding control bits in the timer control register must be correctly set.
For applications that do not require an external timer input, this pin can be used as a normal I/O
pin. Note that if used as a normal I/O pin the timer mode control bits in the timer control register
must select the timer mode, which has an internal clock source, to prevent the input pin from
interfering with the timer operation.

•	 External Timer1 Clock Input
The external timer pin TMR1 is pin-shared with the I/O pin PA7. To configure this pin to operate
as timer input, the corresponding control bits in the timer control register must be correctly set.
For applications that do not require an external timer input, this pin can be used as a normal I/O
pin. Note that if used as a normal I/O pin the timer mode control bits in the timer control register
must select the timer mode, which has an internal clock source, to prevent the input pin from
interfering with the timer operation.

I/O Pin Structures
The diagram illustrates a generic I/O pin internal structures. As the exact logical construction of the
I/O pin will differ and as the pin-shared structures are not illustrated this diagram is supplied as a
guide only to assist with the functional understanding of the I/O pins.

Rev. 1.00	 26 October 27, 2011 Rev. 1.00	 27 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

� � � � � � � � � � � � �

�
�
�

� � � � �
 � � � � �
 	 �� � � � � � � � � � � �
 �

� � � � � � � � � � � � �
 � � � �

� �

� �
�

� �

� �
�

� 	 � � � 	 � � �
 �
� � � � � �
 �

� �
 � � � � 	 � � � 	 � � � � �
 � � � �

�
 � � � � � � �

� � � � � � 	 � � � 	 � � � � �
 � � � �

� �
 � � � � � � � � � � �
 � � � �

� � � � � �
 �

­ � � � �
 �

�

�

� � � �
�
 � � �
 �

�
 � � � �
 �
� � �
 	 �

Input/Output Ports

�
�
�

� � � � � � � � � � � � � �� �
 � � � � � � � � � � � � �
 	 � �

� � � � � � � � � � � � � �
 � � �

� �

� � �

� �

� � �

� � � � � � � � � � �
� � � � � � �

� � � � � � � � � � � � � � � � � �
 � � �

� � � � � � �
 � �

� � � � � � � � � � � � � � � � �
 � � �

� � � � � � � � � � � � � � �
 � � �

� � � � � � � �

�

�

� 	 � � � � � �
 	 � � � � � �

 	 � � � 	 �

Input/output port (PE2)

Rev. 1.00	 28 October 27, 2011 Rev. 1.00	 29 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Programming Considerations
Within the user program, one of the first things to consider is port initialisation. After a reset, all of
the data and port control register will be set high. This means that all I/O pins will default to an input
state, the level of which depends on the other connected circuitry and whether pull-high options
have been selected. If the PAC, PBC and PEC port control register, are then programmed to setup
some pins as outputs, these output pins will have an initial high output value unless the associated
PA, PB and PE port data registers are first programmed. Selecting which pins are inputs and which
are outputs can be achieved byte-wide by loading the correct value into the port control register or
by programming individual bits in the port control register using the "SET [m].i" and "CLR [m].i"
instructions. Note that when using these bit control instructions, a read-modify-write operation takes
place. The microcontroller must first read in the data on the entire port, modify it to the required new
bit values and then rewrite this data back to the output ports.

� � � � � � � � � � � � � � � �

� �

 � � � � � �
 	 � � �

� � � � � � � � �

Read/Write Timing

All pins have the additional capability of providing wake-up functions. When the device is in the
Power Down Mode, various methods are available to wake the device up. One of these is a high to
low transition of any of the Port pins. Single or multiple pins can be setup to have this function.

Timer/Event Counters
The provision of timers form an important part of any microcontroller, giving the designer a means
of carrying out time related functions. This device contains two count-up timers of 8-bit and 16-bit
capacities respectively. As each timer has three different operating modes, they can be configured to
operate as a general timer, an external event counter or as a pulse width measurement device.

There are two types of registers related to the Timer/Event Counters. The first is the register
that contains the actual value of the Timer/Event Counter and into which an initial value can be
preloaded, and is known as TMR0, TMR1H or TMR1L. Reading from this register retrieves the
contents of the Timer/Event Counter. The second type of associated register is the Timer Control
Register, which defines the timer options and determines how the Timer/Event Counter is to be used,
and has the name TMR0C or TMR1C. This device can have the timer clocks configured to come
from the internal clock sources. In addition, the timer clock source can also be configured to come
from the external timer pins.

The external clock source is used when the Timer/Event Counter is in the event counting mode, the
clock source being provided on the external timer pin. The pin has the name TMR0 or TMR1 and
is pin-shared with an I/O pin. Depending upon the condition of the T0E or T1E bit in the Timer
Control Register, each high to low, or low to high transition on the external timer input pin will
increment the Timer/Event Counter by one.

Rev. 1.00	 28 October 27, 2011 Rev. 1.00	 29 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Configuring the Timer/Event Counter Input Clock Source
The Timer/Event Counter's clock can originate from various sources. The system clock source is
used when the Timer/Event Counter 0 is in the timer mode or in the pulse width measurement mode.
The instruction clock source (system clock source divided by 4) is used when the Timer/Event
Counter 1 is in the timer mode or in the pulse width measurement mode. The external clock source is
used when the Timer/Event Counter is in the event counting mode, the clock source being provided
on the external timer pin, TMR0 or TMR1. Depending upon the condition of the T0E or T1E bit,
each high to low, or low to high transition on the external timer pin will increment the counter by
one.

� � � � � �

� � �

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � �

� � � �

 � �
 � 	 � � � � � � � � � �

� � � � � � � � � � �
� � � � � � �

� 	 � 	 � � � �

� �
 � 	 �

� � � � �
 � �
� � � � � � � � � � � �

� �

� � � � � � � �

� � � � � � � �

8-bit Timer/Event Counter 0 Structure

� � � � �

� � �

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � �

� � �
 � �
	 � �
 � � � � � � � � � � � �

� � � � �
 � �

� �
 � � �

� � � � �
 � �
� � � � � � � � � � � �

� � � �
 � � �

 � � � � �

� � � � � � � �

� � � �

� � � �
 � � � � � � �
 � � �

� � �
 �

� � � ­ � ­ � �

16-bit Timer/Event Counter 1 Structure

Timer Register – TMR0, TMR1L/TMR1H
The timer registers are special function registers located in the Special Purpose RAM Data Memory
and are the places where the actual timer values are stored. For 8-bit Timer/Event Counter 0, this
register is known as TMR0. For 16-bit Timer/Event Counter 1, the timer registers are known as
TMR1L and TMR1H. The value in the timer registers increases by one each time an internal clock
pulse is received or an external transition occurs on the external timer pin. The timer will count from
the initial value loaded by the preload register to the full count of FFH for the 8-bit timer or FFFFH
for the 16-bit timer at which point the timer overflows and an internal interrupt signal is generated.
The timer value will then be reset with the initial preload register value and continue counting.

To achieve a maximum full range count of FFH for the 8-bit timer or FFFFH for the 16-bit timer,
the preload registers must first be cleared to all zeros. It should be noted that after power-on, the
preload register will be in an unknown condition. Note that if the Timer/Event Counter is switched
off and data is written to its preload registers, this data will be immediately written into the actual
timer registers. However, if the Timer/Event Counter is enabled and counting, any new data written
into the preload data registers during this period will remain in the preload registers and will only be
written into the timer registers the next time an overflow occurs.

Rev. 1.00	 30 October 27, 2011 Rev. 1.00	 31 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

For the 16-bit Timer/Event Counter which has both low byte and high byte timer registers, accessing
these registers is carried out in a specific way. It must be note when using instructions to preload
data into the low byte timer register, namely TMR1L, the data will only be placed in a low byte
buffer and not directly into the low byte timer register. The actual transfer of the data into the low
byte timer register is only carried out when a write to its associated high byte timer register, namely
TMR1H, is executed. On the other hand, using instructions to preload data into the high byte timer
register will result in the data being directly written to the high byte timer register. At the same time
the data in the low byte buffer will be transferred into its associated low byte timer register. For this
reason, the low byte timer register should be written first when preloading data into the 16-bit timer
registers. It must also be noted that to read the contents of the low byte timer register, a read to the
high byte timer register must be executed first to latch the contents of the low byte timer register
into its associated low byte buffer. After this has been done, the low byte timer register can be read
in the normal way. Note that reading the low byte timer register will result in reading the previously
latched contents of the low byte buffer and not the actual contents of the low byte timer register.

Timer Control Register – TMR0C/TMR1C
The flexible features of the Holtek microcontroller Timer/Event Counters enable them to operate
in three different modes, the options of which are determined by the contents of their respective
control register. For devices are two timer control registers known as TMR0C, TMR1C. It is the
timer control register together with its corresponding timer registers that control the full operation
of the Timer/Event Counters. Before the timers can be used, it is essential that the appropriate timer
control register is fully programmed with the right data to ensure its correct operation, a process that
is normally carried out during program initialization.

To choose which of the three modes the timer is to operate in, either in the timer mode, the event
counting mode or the pulse width measurement mode, bits 7 and 6 of the Timer Control Register,
which are known as the bit pair T0M1/T0M0 or T1M1/T1M0 respectively, depending upon which
timer is used, must be set to the required logic levels. The timer-on bit, which is bit 4 of the Timer
Control Register and known as T0ON or T1ON, depending upon which timer is used, provides the
basic on/off control of the respective timer. Setting the bit high allows the counter to run, clearing
the bit stops the counter. If the timer is in the event count or pulse width measurement mode, the
active transition edge level type is selected by the logic level of bit 3 of the Timer Control Register
which is known as T0E or T1E, depending upon which timer is used.

Rev. 1.00	 30 October 27, 2011 Rev. 1.00	 31 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

TMR0C Register

Bit 7 6 5 4 3 2 1 0
Name T0M1 T0M0 ― T0ON T0E ― ― ―
R/W R/W R/W ― R/W R/W ― ― ―
POR 0 0 ― 0 1 ― ― ―

Bit 7, 6	 T0M1, T0M0: Timer 0 operation mode selection
00: no mode available
01: event counter mode
10: timer mode
11: pulse width capture mode

Bit 5	 Unimplemented
Bit 4	 T0ON: Timer/Event Counter counting enable

0: disable
1: enable

Bit 3	 T0E:
Event Counter active edge selection
0: count on rising edge
1: count on falling edge

Pulse Width Capture active edge selection
0: start counting on falling edge, stop on rising edge
1: start counting on rising edge, stop on falling edge

Bit 2~0	 Unimplemented

TMR1C Register

Bit 7 6 5 4 3 2 1 0
Name T1M1 T1M0 ― T1ON T1E ― ― ―
R/W R/W R/W ― R/W R/W ― ― ―
POR 0 0 ― 0 1 ― ― ―

Bit 7, 6	 T1M1, T1M0: Timer 1 operation mode selection
00: no mode available
01: event counter mode
10: timer mode
11: pulse width capture mode

Bit 5	 Unimplemented
Bit 4	 T1ON: Timer/Event Counter counting enable

0: disable
1: enable

Bit 3	 T1E:
Event Counter active edge selection
0: count on rising edge
1: count on falling edge

Pulse Width Capture active edge selection
0: start counting on falling edge, stop on rising edge
1: start counting on rising edge, stop on falling edge

Bit 2~0	 Unimplemented

Rev. 1.00	 32 October 27, 2011 Rev. 1.00	 33 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Configuring the Timer Mode
In this mode, the Timer/Event Counter can be utilised to measure fixed time intervals, providing an
internal interrupt signal each time the Timer/Event Counter overflows. To operate in this mode, the
Operating Mode Select bit pair, T0M1/T0M0 or T1M1/T1M0, in the Timer Control Register must
be set to the correct value as shown.

Control Register Operating Mode
Select Bits for the Timer Mode

Bit7 Bit6
1 0

In this mode the internal clock, fSYS/4 is used as the internal clock for the Timer/Event Counters.
After the other bits in the Timer Control Register have been setup, the enable bit T0ON or T1ON,
which is bit 4 of the Timer Control Register, can be set high to enable the Timer/Event Counter to
run. Each time an internal clock cycle occurs, the Timer/Event Counter increments by one. When it
is full and overflows, an interrupt signal is generated and the Timer/Event Counter will reload the
value already loaded into the preload register and continue counting. The interrupt can be disabled
by ensuring that the Timer/Event Counter Interrupt Enable bit in the Interrupt Control Register,
INTC0, is reset to zero.

� � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � �

� � � � � � � � � � � � � � � � �
 � � � � � � � � 	 � � � � � � � � 	 � � � �

Timer Mode Timing Chart

Configuring the Event Counter Mode
In this mode, a number of externally changing logic events, occurring on the external timer pin, can
be recorded by the Timer/Event Counter. To operate in this mode, the Operating Mode Select bit
pair, T0M1/T0M0 or T1M1/T1M0, in the Timer Control Register must be set to the correct value as
shown.

Control Register Operating Mode
Select Bits for the Event Counter Mode

Bit7 Bit6
0 1

In this mode, the external timer pin, TMR0 or TMR1, is used as the Timer/Event Counter clock
source, however it is not divided by the internal prescaler. After the other bits in the Timer Control
Register have been setup, the enable bit T0ON or T1ON, which is bit 4 of the Timer Control
Register, can be set high to enable the Timer/Event Counter to run. If the Active Edge Select bit T0E
or T1E, which is bit 3 of the Timer Control Register, is low, the Timer/Event Counter will increment
each time the external timer pin receives a low to high transition. If the Active Edge Select bit is
high, the counter will increment each time the external timer pin receives a high to low transition.
When it is full and overflows, an interrupt signal is generated and the Timer/Event Counter will
reload the value already loaded into the preload register and continue counting. The interrupt can
be disabled by ensuring that the Timer/Event Counter Interrupt Enable bit in the Interrupt Control
Register, INTC0, is reset to zero.

As the external timer pin is shared with an I/O pin, to ensure that the pin is configured to operate as
an event counter input pin, two things have to happen. The first is to ensure that the Operating Mode
Select bits in the Timer Control Register place the Timer/Event Counter in the Event Counting
Mode, the second is to ensure that the port control register configures the pin as an input. It should
be noted that in the event counting mode, even if the microcontroller is in the Power Down Mode,
the Timer/Event Counter will continue to record externally changing logic events on the timer
input pin. As a result when the timer overflows it will generate a timer interrupt and corresponding
wake-up source.

Rev. 1.00	 32 October 27, 2011 Rev. 1.00	 33 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

� � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � �
� � � � � � �
 � � � � � � � � � � � �� � � � � �

Event Counter Mode Timing Chart

Configuring the Pulse Width Measurement Mode
In this mode, the Timer/Event Counter can be utilised to measure the width of external pulses
applied to the external timer pin. To operate in this mode, the Operating Mode Select bit pair,
T0M1/T0M0 or T1M1/T1M0, in the Timer Control Register must be set to the correct valueas
shown.

Control Register Operating Mode
Select Bits for the Pulse Width Capture Mode

Bit7 Bit6
1 1

In this mode the internal clock, fSYS/4 is used as the internal clock for the Timer/Event Counters.
After the other bits in the Timer Control Register have been setup, the enable bit T0ON or T1ON,
which is bit 4 of the Timer Control Register, can be set high to enable the Timer/Event Counter,
however it will not actually start counting until an active edge is received on the external timer pin.

If the Active Edge Select bit T0E or T1E, which is bit 3 of the Timer Control Register, is low, once a
high to low transition has been received on the external timer pin, TMR0 or TMR1, the Timer/Event
Counter will start counting until the external timer pin returns to its original high level. At this point
the enable bit will be automatically reset to zero and the Timer/Event Counter will stop counting. If
the Active Edge Select bit is high, the Timer/Event Counter will begin counting once a low to high
transition has been received on the external timer pin and stop counting when the external timer pin
returns to its original low level. As before, the enable bit will be automatically reset to zero and the
Timer/Event Counter will stop counting. It is important to note that in the Pulse Width Measurement
Mode, the enable bit is automatically reset to zero when the external control signal on the external
timer pin returns to its original level, whereas in the other two modes the enable bit can only be reset
to zero under program control.

The residual value in the Timer/Event Counter, which can now be read by the program, therefore
represents the length of the pulse received on the external timer pin. As the enable bit has now been
reset, any further transitions on the external timer pin will be ignored. Not until the enable bit is
again set high by the program can the timer begin further pulse width measurements. In this way,
single shot pulse measurements can be easily made.

It should be noted that in this mode the Timer/Event Counter is controlled by logical transitions
on the external timer pin and not by the logic level. When the Timer/Event Counter is full and
overflows, an interrupt signal is generated and the Timer/Event Counter will reload the value already
loaded into the preload register and continue counting. The interrupt can be disabled by ensuring
that the Timer/Event Counter Interrupt Enable bit in the Interrupt Control Register, INTC0, is reset
to zero.

As the external timer pin is shared with an I/O pin, to ensure that the pin is configured to operate as
a pulse width measurement pin, two things have to happen. The first is to ensure that the Operating
Mode Select bits in the Timer Control Register place the Timer/Event Counter in the Pulse Width
Measurement Mode, the second is to ensure that the port control register configures the pin as an
input.

Rev. 1.00	 34 October 27, 2011 Rev. 1.00	 35 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

� � � � � � � �� � � � �

� � � � � � � � � � � � � �
� � � �
 � � � �

�
 	 � � � � � � � 	 �
� � � � � � �
 � � � � � � � � �
 �

� � � � � � � � � � 	 � � � � �

 � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � 	 � � � � � � � � � � � ­

Pulse Width Capture Mode Timing Chart

I/O Interfacing
The Timer/Event Counter, when configured to run in the event counter or pulse width measurement
mode, require the use of the external TMR0 and TMR1 pins for correct operation. As these pins
are shared pins they must be configured correctly to ensure they are setup for use as Timer/Event
Counter inputs and not as a normal I/O pins. This is implemented by ensuring that the mode select
bits in the Timer/Event Counter control register, select either the event counter or pulse width
measurement mode. Additionally the Port Control Register bits for these pins must be set high to
ensure that the pin is setup as an input. Any pull-high resistor configuration option on these pins will
remain valid even if the pin is used as a Timer/Event Counter input.

Programming Considerations
When configured to run in the timer mode, the internal system clock is used as the timer clock
source and is therefore synchronised with the overall operation of the microcontroller. In this mode
when the appropriate timer register is full, the microcontroller will generate an internal interrupt
signal directing the program flow to the respective internal interrupt vector. For the pulse width
measurement mode, the internal system clock is also used as the timer clock source but the timer
will only run when the correct logic condition appears on the external timer input pin. As this is
an external event and not synchronised with the internal timer clock, the microcontroller will only
see this external event when the next timer clock pulse arrives. As a result, there may be small
differences in measured values requiring programmers to take this into account during programming.
The same applies if the timer is configured to be in the event counting mode, which again is an
external event and not synchronised with the internal system or timer clock.

When the Timer/Event Counter is read, or if data is written to the preload register, the clock is
inhibited to avoid errors, however as this may result in a counting error, this should be taken into
account by the programmer. Care must be taken to ensure that the timers are properly initialised
before using them for the first time. The associated timer enable bits in the interrupt control
register must be properly set otherwise the internal interrupt associated with the timer will remain
inactive. The edge select timer mode and clock source control bits in timer control register must
also be correctly set to ensure the timer is properly configured for the required application. It is
also important to ensure that an initial value is first loaded into the timer registers before the timer
is switched on; this is because after power-on the initial values of the timer registers are unknown.
After the timer has been initialised the timer can be turned on and off by controlling the enable bit in
the timer control register. Note that setting the timer enable bit high to turn the timer on, should only
be executed after the timer mode bits have been properly setup. Setting the timer enable bit high
together with a mode bit modification, may lead to improper timer operation if executed as a single
timer control register byte write instruction.

Rev. 1.00	 34 October 27, 2011 Rev. 1.00	 35 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

When the Timer/Event counter overflows, its corresponding interrupt request flag in the interrupt
control register will be set. If the timer interrupt is enabled this will in turn generate an interrupt
signal. However irrespective of whether the interrupts are enabled or not, a Timer/Event counter
overflow will also generate a wake-up signal if the device is in a Power-down condition. This
situation may occur if the Timer/Event Counter is in the Event Counting Mode and if the external
signal continues to change state. In such a case, the Timer/Event Counter will continue to count
these external events and if an overflow occurs the device will be woken up from its Power-down
condition. To prevent such a wake-up from occurring, the timer interrupt request flag should first be
set high before issuing the "HALT" instruction to enter the Power Down Mode.

Timer Program Example
This program example shows how the Timer/Event Counter registers are setup, along with how the
interrupts are enabled and managed. Note how the Timer/Event Counter is turned on, by setting
bit 4 of the Timer Control Register. The Timer/Event Counter can be turned off in a similar way by
clearing the same bit. This example program sets the Timer/Event Counter to be in the timer mode,
which uses the internal system clock as the clock source.

org 04h		 ; USB interrupt vector
reti
org 08h		 ; Timer/Event Counter interrupt vector
jmp tmr0int		 ; jump here when Timer0 overflows
:
org 20h		 ; main program
			 ;internal Timer/Event Counter 0 interrupt routine
Tmr0int:
:
			 ; Timer/Event Counter 0 main program placed here
:
reti
:
:
begin:
			 ;setup Timer registers
mov a,09bh		 ; setup Timer preload value
mov tmr0,a;
mov a,080h		 ; setup Timer control register
mov tmr0c,a		 ; timer mode
			 ; setup interrupt register
mov a,005h		 ; enable master interrupt and timer interrupt
mov intc0,a
set tmr0c.4		 ; start Timer/Event Counter - note mode bits must be
			 ; previously setup

Rev. 1.00	 36 October 27, 2011 Rev. 1.00	 37 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Interrupts
Interrupts are an important part of any microcontroller system. When an internal function such
as a Timer/Event Counter overflow, a USB interrupt occur, or a SPI interrupt takes place, their
corresponding interrupt will enforce a temporary suspension of the main program allowing
the microcontroller to direct attention to their respective needs while the internal interrupts are
controlled by the Timer/Event Counter overflow, USB interrupt or reception and the SPI one byte
reception or transmission.

Interrupt Registers
Overall interrupt control, which means interrupt enabling and request flag setting, is controlled by
the interrupt control registers, INTC0 and INTC1. By controlling the appropriate enable bits in the
registers each individual interrupt can be enabled or disabled. Also when an interrupt occurs, the
corresponding request flag will be set by the microcontroller. The global enable flag if cleared to
zero will disable all interrupts.

INTC0 Register

Bit 7 6 5 4 3 2 1 0
Name ― T1F T0F USBF ET1I ET0I EUI EMI
R/W ― R/W R/W R/W R/W R/W R/W R/W
POR ― 0 0 0 0 0 0 0

Bit 7	 Unimplemented, read as “0”
Bit 6	 T1F: Timer/Event Counter 1 interrupt request flag

0: inactive
1: active

Bit 5	 T0F: Timer/Event Counter 0 interrupt request flag
0: inactive
1: active

Bit 4	 USBF: USB interrupt request flag
0: inactive
1: active

Bit 3	 ET1I: Timer/Event Counter 1 interrupt enable
0: disable
1: enable

Bit 2	 ET0I: Timer/Event Counter 0 interrupt enable
0: disable
1: enable

Bit 1	 EUI: USB interrupt enable
0: disable
1: enable

Bit 0	 EMI: Master interrupt global enable
0: disable
1: enable

Rev. 1.00	 36 October 27, 2011 Rev. 1.00	 37 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

INTC1 Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― SIF ― ― ― ESII
R/W ― ― ― R/W ― ― ― R/W
POR ― ― ― 0 ― ― ― 0

Bit 7~5	 Unimplemented, read as “0”
Bit 4	 SIF: SPI interrupt request flag

0: inactive
1: active

Bit 3~1	 Unimplemented, read as “0”
Bit 0	 ESII: SPI interrupt enable

0: disable
1: enable

Interrupt Operation
When a USB interrupt occurs, a SPI insterrupt takes place, or one of the Timer/Event Counters
overflow, if their appropriate interrupt enable bit is set, the Program Counter, which stores the
address of the next instruction to be executed, will be transferred onto the stack. The Program
Counter will then be loaded with a new address which will be the value of the corresponding
interrupt vector. The microcontroller will then fetch its next instruction from this interrupt vector.
The instruction at this vector will usually be a JMP statement which will jump to another section
of program which is known as the interrupt service routine. Here is located the code to control the
appropriate interrupt. The interrupt service routine must be terminated with a RETI statement, which
retrieves the original Program Counter address from the stack and allows the microcontroller to
continue with normal execution at the point where the interrupt occurred.

The various interrupt enable bits, together with their associated request flags, are shown in the
accompanying diagram with their order of priority.

Once an interrupt subroutine is serviced, all the other interrupts will be blocked, as the EMI bit will
be cleared automatically. This will prevent any further interrupt nesting from occurring. However,
if other interrupt requests occur during this interval, although the interrupt will not be immediately
serviced, the request flag will still be recorded. If an interrupt requires immediate servicing while the
program is already in another interrupt service routine, the EMI bit should be set after entering the
routine, to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged,
even if the related interrupt is enabled, until the Stack Pointer is decremented. If immediate service
is desired, the stack must be prevented from becoming full.

�

�
 � 	 � � �

� � � � � � � � � � � � �

 � � � � � � � � � � � � � � � �

� � �
� � � � � � � �

� � � � � � � � �
� � � � � � �

� � � �

�

� �

� � � � � � � � � � � � � � � � � � � ­ � � � �
 � � 	
� � � � � � � � � �
 � � � � � � � � � � � � � ­ �

� � ­ �

� � 	

� � � � � � � � � � � � � � � � � � � � � � � �
 � � 	
� � � � � � � � � �
 � � � � � � � � � � � � � � �

� � � �

� � �

� � � � � � � � � � � � � �

 � � � � � � � � � � � � � � �

� � � �

Interrupt Structure

Rev. 1.00	 38 October 27, 2011 Rev. 1.00	 39 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Interrupt Priority
Interrupts, occurring in the interval between the rising edges of two consecutive T2 pulses, will be
serviced on the latter of the two T2 pulses, if the corresponding interrupts are enabled. In case of
simultaneous requests, the following table shows the priority that is applied. These can be masked
by resetting the EMI bit.

Interrupt Source Priority Vector
USB Interrupt 1 0004H
Timer/Event Counter 0 Overflow Interrupt 2 0008H
Timer/Event Counter 1 Overflow Interrupt 3 000CH
SPI Interrupt 4 0010H

In cases where both external and internal interrupts are enabled and where an external and internal
interrupt occurs simultaneously, the external interrupt will always have priority and will therefore be
serviced first. Suitable masking of the individual interrupts using the interrupt registers can prevent
simultaneous occurrences.

Timer/Event Counter Interrupt
For a Timer/Event Counter interrupt to occur, the global interrupt enable bit, EMI, and the
corresponding timer interrupt enable bit, ET0I/ET1I, must first be set. An actual Timer/Event
Counter interrupt will take place when the Timer/Event Counter interrupt request flag, T0F/T1F,
is set, a situation that will occur when the Timer/Event Counter overflows. When the interrupt is
enabled, the stack is not full and a Timer/Event Counter overflow occurs, a subroutine call to the
timer interrupt vector at location 08H/0CH, will take place. When the interrupt is serviced, the timer
interrupt request flag, T0F/T1F, will be automatically reset and the EMI bit will be automatically
cleared to disable other interrupts.

Programming Considerations
By disabling the interrupt enable bits, a requested interrupt can be prevented from being serviced,
however, once an interrupt request flag is set, it will remain in this condition in the interrupt control
register until the corresponding interrupt is serviced or until the request flag is cleared by a software
instruction.

It is recommended that programs do not use the "CALL subroutine" instruction within the interrupt
subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately
in some applications. If only one stack is left and the interrupt is not well controlled, the original
control sequence will be damaged once a "CALL subroutine" is executed in the interrupt subroutine.

All of these interrupts have the capability of waking up the processor when in the Power Down
Mode.

Only the Program Counter is pushed onto the stack. If the contents of the accumulator or status
register are altered by the interrupt service program, which may corrupt the desired control
sequence, then the contents should be saved in advance.

Rev. 1.00	 38 October 27, 2011 Rev. 1.00	 39 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

USB Interrupt
The USB interrupts are triggered by the following USB events causing the related interrupt request
flag, USBF, to be set.

•	 Access of the corresponding USB FIFO from PC

•	 A USB suspend signal from the PC

•	 A USB resume signal from the PC

•	 A USB Reset signal

When the interrupt is enabled, the stack is not full and the USB interrupt is active, a subroutine
call to location 04H will occur. The interrupt request flag, USBF, and the EMI bit will be cleared to
disable other interrupts.

When the PC Host accesses the FIFO of the device, the corresponding request bit, USR, is set, and
a USB interrupt is triggered. So the user can easy determine which FIFO has been accessed. When
the interrupt has been served, the corresponding bit should be cleared by firmware. When the device
receive a USB Suspend signal from Host PC, the suspend line (bit 0 of USC) is set and a USB
interrupt is also triggered.

Also when device receive a Resume signal from Host PC, the resume line (bit 3 of USC) is set and a
USB interrupt is triggered.

Serial Interface Interrupt
The Serial Interface Interrupt, also known as the SPI interrupt. A SPI Interrupt request will take place
when the SPI Interrupt request flag, SIF, is set, which occurs when a byte of data has been received
or transmitted by the SPI interface. To allow the program to branch to its respective interrupt vector
address, the global interrupt enable bit, EMI, and the Serial Interface Interrupt enable bit, ESII, must
first be set. When the interrupt is enabled, the stack is not full and a byte of data has been transmitted
or received by the SPI interface, a subroutine call to the respective Interrupt vector, will take place.
When the Serial Interface Interrupt is serviced, the EMI bit will be automatically cleared to disable
other interrupts, and the interrupt request flag, SIF, will be also automatically cleared.

Reset and Initialisation
A reset function is a fundamental part of any microcontroller ensuring that the device can be set
to some predetermined condition irrespective of outside parameters. The most important reset
condition is after power is first applied to the microcontroller. In this case, internal circuitry will
ensure that the microcontroller, after a short delay, will be in a well defined state and ready to
execute the first program instruction. After this power-on reset, certain important internal registers
will be set to defined states before the program commences. One of these registers is the Program
Counter, which will be reset to zero forcing the microcontroller to begin program execution from the
lowest Program Memory address.

In addition to the power-on reset, situations may arise where it is necessary to forcefully apply
a reset condition when the microcontroller is running. One example of this is where after power
has been applied and the microcontroller is already running, the RES line is forcefully pulled low.
In such a case, known as a normal operation reset, some of the microcontroller registers remain
unchanged allowing the microcontroller to proceed with normal operation after the reset line is
allowed to return high. Another type of reset is when the Watchdog Timer overflows and resets the
microcontroller. All types of reset operations result in different register conditions being setup.

Another reset exists in the form of a Low Voltage Reset, LVR, where a full reset, similar to the RES
reset is implemented in situations where the power supply voltage falls below a certain threshold.

Rev. 1.00	 40 October 27, 2011 Rev. 1.00	 41 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Reset Functions
There are five ways in which a microcontroller reset can occur, through events occurring both
internally and externally:

•	 Power-on Reset
The most fundamental and unavoidable reset is the one that occurs after power is first applied to
the microcontroller. As well as ensuring that the Program Memory begins execution from the first
memory address, a power-on reset also ensures that certain other registers are preset to known
conditions. All the I/O port and port control registers will power up in a high condition ensuring
that all pins will be first set to inputs.
Although the microcontroller has an internal RC reset function, if the VDD power supply rise time
is not fast enough or does not stabilise quickly at power-on, the internal reset function may be
incapable of providing a proper reset operation. In such cases it is recommended that an external
RC network is connected to the RES pin, whose additional time delay will ensure that the RES
pin remains low for an extended period to allow the power supply to stabilise. During this time
delay, normal operation of the microcontroller will be inhibited. After the RES line reaches a
certain voltage value, the reset delay time tRSTD is invoked to provide an extra delay time after
which the microcontroller will begin normal operation. The abbreviation SST in the figures stands
for System Start-up Timer.

� � �

� � �

� � � � � � � � � � � �

� � � � � � �
 � � � � � �

�
 	 � � � �

� � � � �

Power-On Reset Timing Chart

•	 RES Pin Reset
For most applications a resistor connected between VDD and the RES pin and a capacitor
connected between VSS and the RES pin will provide a suitable external reset circuit. Any
wiring connected to the RES pin should be kept as short as possible to minimise any stray noise
interference.

� � �

� � �

� � �
� � � � �

� � � � �

Basic Reset Circuit
For applications that operate within an environment where more noise is present the Enhanced
Reset Circuit shown is recommended.

� � �

� � � � �

� � � � �
� � �

� � �

� � � � � �

� � � �

Enhanced Reset Circuit

Rev. 1.00	 40 October 27, 2011 Rev. 1.00	 41 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

More information regarding external reset circuits is located in Application Note HA0075E on the
Holtek website.
This type of reset occurs when the microcontroller is already running and the RES pin is
forcefully pulled low by external hardware such as an external switch. In this case as in the case
of other reset, the Program Counter will reset to zero and program execution initiated from this
point. Note that as the external reset pin is also pin-shared with PE2 if it is to be used as a reset
pin, the correct reset configuration option must be selected.

� � �

� � � � � � � � � � � �

� � � � � � � � � � � � � �

 � � �
 	 	

 � � �
 	 	

� � � � 	

RES Reset Timing Chart

•	 Low Voltage Reset – LVR
The microcontroller contains a low voltage reset circuit in order to monitor the supply voltage of
the device. The LVR function is selected via a configuration option. If the supply voltage of the
device drops to within a range of 0.9V~VLVR such as might occur when changing the battery, the
LVR will automatically reset the device internally. For a valid LVR signal, a low supply voltage,
i.e., a voltage in the range between 0.9V~VLVR must exist for a time greater than that specified by
tLVR in the A.C. characteristics. If the low supply voltage state does not exceed this value, the LVR
will ignore the low supply voltage and will not perform a reset function. The actual VLVR value
can be selected via configuration options.

� � �

� � � � � � � � � � � �

� � � � � � � � � � �
 � �

� � � � �

Low Voltage Reset Timing Chart

•	 Watchdog Time-out Reset during Normal Operation
The Watchdog time-out Reset during normal operation is the same as a hardware RES pin reset
except that the Watchdog time-out flag TO will be set to "1".

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � �
 � �

� � � � �

WDT Time-out Reset during Normal Operation Timing Chart

•	 Watchdog Time-out Reset during Power Down
The Watchdog time-out Reset during Power Down is a little different from other kinds of reset.
Most of the conditions remain unchanged except that the Program Counter and the Stack Pointer
will be cleared to "0" and the TO flag will be set to "1". Refer to the A.C. Characteristics for tSST
details.

� � � � � � � � � � � �

� � � � � � � � � � � �
� � � �

WDT Time-out Reset during Power Down Timing Char

Rev. 1.00	 42 October 27, 2011 Rev. 1.00	 43 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Reset Initial Conditions
The different types of reset described affect the reset flags in different ways. These flags, known
as PDF and TO are located in the status register and are controlled by various microcontroller
operations, such as the Power Down function or Watchdog Timer. The reset flags are shown in the
table:

TO PDF RESET Conditions
0 0 RES reset during power-on
0 0 RES wake-up during Power Down
0 0 RES or LVR reset during normal operation
1 u WDT time-out reset during normal operation
1 1 WDT time-out reset during Power Down

Note: "u" stands for unchanged

The following table indicates the way in which the various components of the microcontroller are
affected after a power-on reset occurs.

Item Condition After RESET
Program Counter Reset to zero
Interrupts All interrupts will be disabled
WDT Clear after reset, WDT begins counting
Timer/Event Counter Timer Counter will be turned off
Prescaler The Timer Counter Prescaler will be cleared
Input/Output Ports I/O ports will be setup as inputs
Stack Pointer Stack Pointer will point to the top of the stack

The different kinds of resets all affect the internal registers of the microcontroller in different ways.
To ensure reliable continuation of normal program execution after a reset occurs, it is important to
know what condition the microcontroller is in after a particular reset occurs. The following table
describes how each type of reset affects the microcontroller internal registers.

Rev. 1.00	 42 October 27, 2011 Rev. 1.00	 43 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Register Reset
(Power On)

WDT Time-
out (Normal
Operation)

RES Reset
(Normal

Operation)

RES Reset
(HALT)

WDT Time-
Out (HALT)*

USB-Reset
(Normal)

USB-Reset
(HALT)

TMR0 xxxx xxxx 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu
TMR0C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u--- 00-0 1--- 00-0 1---
TMR1H xxxx xxxx 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu
TMR1L xxxx xxxx 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu
TMR1C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u--- 00-0 1--- 00-0 1---
Program Counter 0000H 0000H 0000H 0000H 0000H 0000H 0000H
MP0 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu
MP1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu
ACC xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu
TBLP xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu
TBHP --- - xxxx ---- uuuu ---- uuuu ---- uuuu ---- uuuu ---- uuuu ---- uuuu
TBLH -xxx xxxx -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu
STATUS --00 xxxx --1u uuuu --00 uuuu --00 uuuu --11 uuuu --uu uuuu --01 uuuu
INTC0 -000 0000 -000 0000 -000 0000 -000 0000 -uuu uuuu -000 0000 -000 0000
INTC1 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - u - - - u - - - 0 - - - 0 - - - 0 - - - 0
WDTS 1000 0111 1000 0111 1000 0111 1000 0111 uuuu uuuu 1000 0111 1000 0111
PA 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111
PAC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111
PB - - - - 1111 -- - - 1111 -- - - 1111 -- - - 1111 ---- uuuu -- - - 1111 -- - - 1111
PBC - - - - 1111 -- - - 1111 -- - - 1111 -- - - 1111 ---- uuuu -- - - 1111 -- - - 1111
PE - - - - -111 - - - - -111 - - - - -111 - - - - -111 -- - - -uuu - - - - -111 - - - - -111
PEC - - - - -111 - - - - -111 - - - - -111 - - - - -111 -- - - -uuu - - - - -111 - - - - -111
USB_STAT ---x xxxx ---u uuuu ---x xxxx ---x xxxx ---u uuuu ---x xxxx ---x xxxx
PIPE_CTRL 0000 0110 uuuu uuuu 0000 0110 0000 0110 uuuu uuuu 0000 0110 0000 0110
AWR 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000
PIPE 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000
STALL 0000 0110 uuuu uuuu 0000 0110 0000 0110 uuuu uuuu 0000 0110 0000 0110
SIES 0x0x x000 uuuu uuuu 0x0x x000 0x0x x000 uuuu uuuu 0x0x x000 0x0x x000
MISC 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000
Endpt_EN 0000 0111 uuuu uuuu 0000 0111 0000 0111 uuuu uuuu 0000 0111 0000 0111
FIFO0 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000
FIFO1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000
FIFO2 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000
USC 11xx 0000 uuxx uuuu 11xx 0000 11xx 0000 uuxx uuuu uu00 0u00 uu00 0u00
USR 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu u1uu 0000 u1uu 0000
SCC 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0uu0 u000 0uu0 u000
SPIR ---- 0000 ---- 0000 ---- 0000 ---- 0000 ---- uuuu ---- 0000 ---- 0000
SBCR 0110 0000 0110 0000 0110 0000 0110 0000 uuuu uuuu 0110 0000 0110 0000
SBDR xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu xxxx xxxx xxxx xxxx

Note: "*" means "warm reset"
"-" not implemented
"u" means "unchanged"
"x" means "unknown"

Rev. 1.00	 44 October 27, 2011 Rev. 1.00	 45 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Oscillator
The clock source for these devices is provided by an integrated oscillator requiring no external
components. This oscillator has two fixed frequencies of either 6MHz or 12MHz, the selection of
which is made by the SYSCLK bit in the SCC register.

Watchdog Timer Oscillator
The WDT oscillator is a fully self-contained free running on-chip RC oscillator with a typical period
of 32μs at 5V requiring no external components. When the device enters the Power Down Mode,
the system clock will stop running but the WDT oscillator continues to free-run and to keep the
watchdog active. However, to preserve power in certain applications the WDT oscillator can be
disabled via a configuration option.

Power Down Mode and Wake-up

Power Down Mode
All of the Holtek microcontrollers have the ability to enter a Power Down Mode. When the device
enters this mode, the normal operating current, will be reduced to an extremely low standby current
level. This occurs because when the device enters the Power Down Mode, the system oscillator
is stopped which reduces the power consumption to extremely low levels, however, as the device
maintains its present internal condition, it can be woken up at a later stage and continue running,
without requiring a full reset. This feature is extremely important in application areas where the
microcontroller must have its power supply constantly maintained to keep the device in a known
condition but where the power supply capacity is limited such as in battery applications.

Entering the Power Down Mode
There is only one way for the device to enter the Power Down Mode and that is to execute the
"HALT" instruction in the application program. When this instruction is executed, the following will
occur:

•	 The system oscillator will stop running and the application program will stop at the "HALT"
instruction.

•	 The Data Memory contents and registers will maintain their present condition.

•	 The WDT will be cleared and resume counting if the WDT clock source is selected to come from
the WDT or RTC oscillator. The WDT will stop if its clock source originates from the system
clock.

•	 The I/O ports will maintain their present condition.

•	 In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO,
will be cleared.

Rev. 1.00	 44 October 27, 2011 Rev. 1.00	 45 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Standby Current Considerations
As the main reason for entering the Power Down Mode is to keep the current consumption of the
microcontroller to as low a value as possible, perhaps only in the order of several micro-amps, there
are other considerations which must also be taken into account by the circuit designer if the power
consumption is to be minimised.

Special attention must be made to the I/O pins on the device. All high-impedance input pins must
be connected to either a fixed high or low level as any floating input pins could create internal
oscillations and result in increased current consumption. Care must also be taken with the loads,
which are connected to I/O pins, which are setup as outputs. These should be placed in a condition
in which minimum current is drawn or connected only to external circuits that do not draw current,
such as other CMOS inputs.

If the configuration options have enabled the Watchdog Timer internal oscillator then this will
continue to run when in the Power Down Mode and will thus consume some power. For power
sensitive applications it may be therefore preferable to use the system clock source for the Watchdog
Timer.

Wake-up
After the system enters the Power Down Mode, it can be woken up from one of various sources
listed as follows:

•	 An external reset

•	 An external falling edge Wake-up

•	 A system interrupt

•	 A WDT overflow

If the system is woken up by an external reset, the device will experience a full system reset,
however, if the device is woken up by a WDT overflow, a Watchdog Timer reset will be initiated.
Although both of these wake-up methods will initiate a reset operation, the actual source of the
wake-up can be determined by examining the TO and PDF flags. The PDF flag is cleared by a
system power-up or executing the clear Watchdog Timer instructions and is set when executing the
"HALT" instruction. The TO flag is set if a WDT time-out occurs, and causes a wake-up that only
resets the Program Counter and Stack Pointer, the other flags remain in their original status.

Each pin can be setup via an individual configuration option to permit a negative transition on the
pin to wake-up the system. When a pin wake-up occurs, the program will resume execution at the
instruction following the "HALT" instruction.

If the system is woken up by an interrupt, then two possible situations may occur. The first is where
the related interrupt is disabled or the interrupt is enabled but the stack is full, in which case the
program will resume execution at the instruction following the "HALT" instruction. In this situation,
the interrupt which woke-up the device will not be immediately serviced, but will rather be serviced
later when the related interrupt is finally enabled or when a stack level becomes free. The other
situation is where the related interrupt is enabled and the stack is not full, in which case the regular
interrupt response takes place. If an interrupt request flag is set to "1" before entering the Power
Down Mode, the wake-up function of the related interrupt will be disabled.

No matter what the source of the wake-up event is, once a wake-up situation occurs, a time period
equal to 1024 system clock periods will be required before normal system operation resumes.
However, if the wake-up has originated due to an interrupt, the actual interrupt subroutine execution
will be delayed by an additional one or more cycles. If the wake-up results in the execution of the
next instruction following the "HALT" instruction, this will be executed immediately after the 1024
system clock period delay has ended.

Rev. 1.00	 46 October 27, 2011 Rev. 1.00	 47 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Watchdog Timer
The WDT clock source is implemented by a dedicated RC oscillator (WDT oscillator) or instruction
clock (system clock divided by 4), enabled using a configuration option. This timer is designed to
prevent a software malfunction or sequence jumping to an unknown location with unpredictable
results. If the Watchdog Timer is disabled, all the executions related to the WDT results in no
operation.

Once the internal WDT oscillator (RC oscillator normally with a period of 32μs) is selected, it is first
divided by 256 (8-stages) to get the nominal time-out period of approximately 8.19ms. This time-out
period may vary with temperature, VDD and process variations. By using the WDT prescaler, longer
time-out periods can be realized. Writing data to WS2, WS1, WS0 (bit 2, 1, 0 of the WDTS) can
give different time-out periods. If WS2, WS1, WS0 are all equal to "1", the division ratio is up to
1:128, and the maximum time-out period is 1.048s.

If the WDT oscillator is disabled, the WDT clock source may still come from the instruction clock
and operate in the same manner except that in the Power down Mode state the WDT may stop
counting and lose its protecting purpose. In this situation the WDT logic can be restarted by external
logic. The high nibble and bit 3 of the WDTS are reserved for user defined flags, which can be used
to indicate some specified status.

If the device operates in a noisy environment, using the on-chip RC oscillator (WDT OSC) is
strongly recommended, since the HALT will stop the system clock.

� � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
 � � � �
 	 � �

� � � � � � � � � �

� � � � � � � � � � � �

� � � � � � �
� � � � � 	 � � � � � � � � � �

� 	 �
 � � � � � � � � � �
� � � � ­ � �
 � � � � � � � � � � �

� � � � � � � � � � 	
 ­
� � � � � � � � � � 	
 ­

� � � � � � � � � � � � � � � � � � �
� � � �

� � � �
 � � � � �

� � � � � � � � 	 	
 � � �
� � � � � 	 � � � � � � � � � �
� � � � ­ � �
 � � � � � � � � � � �

Watchdog Timer

WDTS Register

Bit 7 6 5 4 3 2 1 0
Name WS7 ― ― ― WS3 WS2 WS1 WS0
R/W R/W ― ― ― R/W R/W R/W R/W
POR 1 0 0 0 0 1 1 1

Bit 7	 WS7: USB reset enable control bit
Described elsewhere

Bit 6~4	 Unimplemented, read as “0”
Bit 3	 WS3: D+, and D- have a 300K ± 50% ohm pull-high control bit

Described elsewhere
Bit 2~0	 WS2, WS1, WS0: WDT Time-out period selection

000: 1:1
001: 1:2
010: 1:4
011: 1:8
100: 1:16
101: 1:32
110: 1:64
111: 1:128

Rev. 1.00	 46 October 27, 2011 Rev. 1.00	 47 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

USB Interface

Suspend Wake-Up and Remote Wake-Up
If there is no signal on the USB bus for over 3ms, the device will go into a suspend mode. The
Suspend line (bit 0 of the USC register) will be set to "1" and a USB interrupt is triggered to indicate
that the devices should jump to the suspend state to meet the 500μA USB suspend current spec.

In order to meet the 500μA suspend current, the firmware should disable the USB clock by clearing
the USBCKEN bit which is bit 3 of the SCC register to "0". The suspend current is 400μA.

The user can further decrease the suspend current to 250μA by setting the SUSP2 bit which is bit 4
of the SCC register. If in the USB mode set this bit LVR OPT must disable.

When the resume signal is sent out by the host, the devices will wake up the MCU with a USB
interrupt and the Resume line (bit 3 of the USC register) is set. In order to make the device function
properly, the firmware must set the USBCKEN (bit 3 of the SCC register) to "1" and clear the
SUSP2 (bit 4 of the SCC register). Since the Resume signal will be cleared before the Idle signal
is sent out by the host, the Suspend line (bit 0 of the USC register) will be set to "0". So when the
MCU is detecting the Suspend line (bit 0 of USC register), the Resume line condition should be
noted and taken into consideration.

After finishing the resume signal, the suspend line will go inactive and a USB interrupt will be
triggered. The following is the timing diagram.

� � � � � � �

� � � � � � � � � � � � � � � � �

� � �
 � � �

As the device has a remote wake up function it can wake-up the USB Host by sending a wake-up
pulse through RMOT_WK (bit 1 of the USC register). Once the USB Host receives a wake-up
signal from the devices, it will send a Resume signal to the device. The timing is as follows:

� � � � � � �

� � � � � � � � � � � � � � � � �

� � �
 � � �

�
 	 �
 � �

 � � � � �
� � � � � � �

 � � � � � � � � �

Rev. 1.00	 48 October 27, 2011 Rev. 1.00	 49 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

To Configure as PS2 Device
The devices can also be configured as a USB interface or PS2 interface device, by configuring
MODE_CTRL0 (bit 4 of the USR register) and MODE_CTRL1 (bit 5 of the USR register). If
MODE_CTRL0=1, and MODE_CTRL1=0, the device will be configured as a PS2 interface, pin
UDN is configured as a PS2 Data pin and UDP is configured as a PS2 Clk pin. The user can read or
write to the PS2 Data or PS2 Clk pin by accessing the corresponding bit PS2_DAI (bit 4 of the USC
register), PS2_CKI (bit 5 of the USC register), PS2_DAO (bit 6 of the USC register) and PS2_CKO
(bit 7 of the USC register) respectively.

The user should make sure that in order to read the data properly, the corresponding output bit must
be set to “1”. For example, if it is desired to read the PS2 Data by reading PS2_DAI, then PS2_DAO
should set to “1”. Otherwise it is always read as “0”.

If MODE_CTRL0=0, and MODE_CTRL1=1, the device is configured as a USB interface. Both the
UDN and UDP are driven by the SIE of the devices. The user can only write or read the USB data
through the corresponding FIFO. Both the MODE_CTRL0 and MODE_CTRL1 default is “0”.

USB Control Registers
There are twelve registers used for the USB function. The AWR register contains the current address
and a remote wake up function control bit. The initial value of AWR is "00H". The address value
extracted from the USB command is not to be loaded into this register until the SETUP stage is
completed.

AWR Register

Bit 7 6 5 4 3 2 1 0
Name AD6 AD5 AD4 AD3 AD2 AD1 AD0 WKEN
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~1	 AD6~AD0: USB device address
Bit 0	 WKEN: USB remote-wake-up control bit

0: disable
1: enable

The AWR register contains the current address and a remote wake up function control bit. The initial
value of AWR is “00H”. The address value extracted from the USB command has not to be loaded
into this register until the SETUP stage has finished.

WDTS Register

Bit 7 6 5 4 3 2 1 0
Name WS7 ― ― ― WS3 WS2 WS1 WS0
R/W R/W ― ― ― R/W R/W R/W R/W
POR 1 0 0 0 0 1 1 1

Bit 7	 WS7: USB reset enable control bit
0: USB reset signal cannot reset MCU
1: USB reset signal can reset MCU and set URST_FLAG (bit 2 of the USC register)
(default on at MCU reset)

Bit 6~4	 unimplemented, read as “0”
Bit 3	 WS3: D+, and D- have a 300K ± 50% ohm pull-high control bit

0: Non-pull-high (Default)
1: Pull-high

Bit 2~0	 WS2, WS1, WS0: WDT Time-out period selection
Described elsewhere

Rev. 1.00	 48 October 27, 2011 Rev. 1.00	 49 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

USC Register

Bit 7 6 5 4 3 2 1 0
Name PS2_CKO PS2_DAO PS2_CKI PS2_DAI RESUME_O URST_FLAG RMOT_WK SUSPEND
R/W W W R R R R/W W R
POR 1 1 0 0 0 0 0 0

Bit 7	 PS2_CKO: �Output for driving UDP/CLK pin, when the device works under 3D 	
 PS2 mouse function. The default value is “1”.

Bit 6	 PS2_DAO: �Output for driving UDN/DATA pin, when the device works under 3D	
 PS2 mouse function. The default value is “1”.

Bit 5	 PS2_CKI: UDP/CLK input detect bit
0: input “0”
1: input “1”

Bit 4	 PS2_DAI: UDN/DATA input detect bit
0: input “0”
1: input “1”

Bit 3	 RESUME_O: USB resume indication bit
0: SUSPEND bit goes to “0”
1: leave the suspend mode

When the USB leaves the suspend mode, this bit is set to “1” (set by SIE). When the
RESUME is set by SIE, an interrupt will be generated to wake-up the MCU. In order
to detect the suspend state, the MCU should set USBCKEN and clear SUSP2 (in the
SCC register) to enable the SIE detect function. RESUME will be cleared when the
SUSPEND goes to “0”. When the MCU is detecting the SUSPEND, the condition of
RESUME (causes the MCU to wake-up) should be noted and taken into consideration.

Bit 2	 URST_FLAG: USB reset indication bit
0: no USB reset
1: USB reset occurred

This bit is set/cleared by the USB SIE. This bit is used to detect a USB reset event on
the USB bus. When this bit is set to “1”, this indicates that a USB reset has occurred
and that a USB interrupt will be initialized.

Bit 1	 RMOT_WK: USB remote wake-up command
0: no remote wake-up
1: remote wake-up

It is set by MCU to leave the USB host leaving the suspend mode. Indicate that the
USB host leaves the suspend mode.

Bit 0	 SUSPEND: USB suspend indication
0: not in the suspend mode
1: enter the suspend mode

When this bit is set to 1 (set by SIE), it indicates that the USB bus has entered the
suspend mode. The USB interrupt is also triggered when this bit changes from low to
high.

Rev. 1.00	 50 October 27, 2011 Rev. 1.00	 51 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

The USR (USB endpoint interrupt status register) register is used to indicate which endpoint is
accessed and to select the serial bus, PS2 or USB. The endpoint request flags, EP0_INT, EP1_INT
and EP2_INT, are used to indicate which endpoints are accessed. If an endpoint is accessed, the
related endpoint request flag will be set to “1” and the USB interrupt will occur, if the USB interrupt
is enabled and the stack is not full. When the active endpoint request flag is served, the endpoint
request flag has to be cleared to “0”.

USR Register

Bit 7 6 5 4 3 2 1 0
Name USB_flag ― MODE_CTRL1 MODE_CTRL0 ― EP2_INT EP1_INT EP0_INT
R/W R/W ― R/W R/W ― R/W R/W R/W
POR 0 ― 0 0 ― 0 0 0

Bit 7	 USB_flag: USB mode indication flag
0: not in USB mode
1: in USB mode

This flag is used to indicate the MCU is in USB mode or not. This bit will be cleared
to “0” after power-on reset. The default value is “0”.

Bit 6	 Unimplemented
Bit 5~4	 MODE_CTRL1, MODE_CTRL0: USB mode control bits

00: �Non-USB mode, turn-off V33O, both UDP and UDN can be read and	
 write (default)

01: �Non-USB mode, has 200Ω between VDD and V33O, both UDP and 	
 UDN can be read and write

10: �USB mode, 1.5kΩ between UDN and V33O, V33O output 3.3V, both 	
 UDP and UDN are read only

11:� Non-USB mode, V33O output 3.3V, both UDP and UDN can be read 	
 and write

Bit 3	 Unimplemented
Bit 2	 EP2_INT: Endpoint 2 accessed detection

0: not accessed
1: accessed

Bit 1	 EP1_INT: Endpoint 1 accessed detection
0: not accessed
1: accessed

Bit 0	 EP0_INT: Endpoint 0 accessed detection
0: not accessed
1: accessed

When the EP0_INT, EP1_INT, or EP2_INT bit is set to “1” (set by the SIE), it
indicates that endpoint 0, 1, or 2, is accessed and a USB interrupt will occur. When the
interrupt has been served, this bit should be cleared by firmware.

Rev. 1.00	 50 October 27, 2011 Rev. 1.00	 51 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

There is a system clock control register implement to select the clock used in the MCU. This register
consisters of the USB clock sontrol bit, USBCKEN, second suspend mode control bit, SUSP2, and
a system colck selection bit, SYSCLK. The PS2 mode indicate bit, PS2_flag, and a system clock
adjust control bit, CLK_adj.

SCC Register

Bit 7 6 5 4 3 2 1 0
Name CLK_adj SYSCLK PS2_flag SUSP2 USBCKEN ― ― ―
R/W R/W R/W R/W R/W R/W ― ― ―
POR 0 0 0 0 0 ― ― ―

Bit 7	 CLK_adj: USB mode system clock adjustment
0: enable (default)
1: disable

This bit is used to adjust the system clock for the USB mode for temperature changes.
In the Power-down Mode this bit should be set high to reduce power consumption.

Bit 6	 SYSCLK: Specify MCU oscillator frequency indication bit
0: 12MHz crystal oscillator or resonator, clear this bit to “0”
1: 6MHz crystal oscillator or resonator, set this bit to “1”

This bit is used to specify the system oscillator frequency used by the MCU. If an
Integrated 6MHz oscillator is used, this bit should be set to “1”. If an Integrated
12MHz oscillator is used, this bit should be cleared to “0” (default).

Bit 5	 PS2_flag: PS2 mode indication bit
0: not PS2 mode
1: PS2 mode

This flag is used to indicate that the MCU is in the PS2 mode. (Bit=1)
This bit is R/W by FW and will be cleared to “0” after power-on reset. (Default="0")

Bit 4	 SUSP2: Reduce power consumption in suspend mode control bit
0: in normal mode
1: in halt mode, set this bit to “1” for reducing power consumption

Bit 3	 USBCKEN: USB clock control bit
0: disable
1: enable

Bit 2~0	 Unimplemented

STALL and PIPE, PIPE_CTRL, Endpt_EN Registers
The PIPE register represents whether the corresponding endpoint is accessed by the host or not.
After an ACT_EN signal has been sent out, the MCU can check which endpoint had been accessed.
This register is set only after the a time when the host is accessing the corresponding endpoint.

The STALL register shows whether the corresponding endpoint works or not. As soon as the
endpoint works improperly, the corresponding bit must be set.

The PIPE_CTRL Register is used for configuring the IN (Bit=1) or OUT (Bit=0) Pipe. The default
is define IN pipe. Bit 0 (DATA0) of the PIPE_CTRL Register is used to set the data toggle of any
endpoint (except endpoint 0) using data toggles to the value DATA0. Once the user wants any
endpoint (except endpoint 0) using data toggles to the value DATA0. the user can output a LOW
pulse to this bit. The LOW pulse period must at least 10 instruction cycles.

The Endpt_EN Register is used to enable or disable the corresponding endpoint (except endpoint 0)
Enable Endpoint (Bit=1) or disable Endpoint (Bit=0)

Rev. 1.00	 52 October 27, 2011 Rev. 1.00	 53 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

PIPE_CTRL Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― ― ― SETIO2 SETIO1 DATA0
R/W ― ― ― ― ― R/W R/W R/W
POR ― ― ― ― ― 1 1 1

Bit 7~3	 Unimplemented
Bit 2	 SETIO2: USB PIPE 2 IN or OUT control bit

0: out
1: in (default)

Bit 1	 SETIO1: USB PIPE 1 IN or OUT control bit
0: out
1: in (default)

Bit 0	 DATA0: USB Endpoint data control bit
0: low
1: high

STALL Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― ― ― STL2 STL1 STL0
R/W ― ― ― ― ― R/W R/W R/W
POR ― ― ― ― ― 1 1 1

Bit 7~3	 Unimplemented
Bit 2	 STL2: USB Endpoint 2 Stall indication bit

0: not stall
1: stall

Bit 1	 STL1: USB Endpoint 1 Stall indication bit
0: not stall
1: stall

Bit 0	 STL0: USB Endpoint 0 Stall indication bit
0: not stall
1: stall

PIPE Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― ― ― Pipe2 Pipe1 Pipe0
R/W ― ― ― ― ― R R R
POR ― ― ― ― ― 0 0 0

Bit 7~3	 Unimplemented
Bit 2	 Pipe2: USB PIPE 2 in use indication bit

0: not in use
1: in use

Bit 1	 Pipe1: USB PIPE 1 in use indication bit
0: not in use
1: in use

Bit 0	 Pipe0: USB PIPE 0 in use indication bit
0: not in use
1: in use

Rev. 1.00	 52 October 27, 2011 Rev. 1.00	 53 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Endpt_EN Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― ― ― EP2EN EP1EN EP0EN
R/W ― ― ― ― ― R/W R/W R/W
POR ― ― ― ― ― 1 1 1

Bit 7~3	 Unimplemented
Bit 2	 EP2EN: USB Endpoint 2 control bit

0: disable
1: enable

Bit 1	 EP1EN: USB Endpoint 1 control bit
0: disable
1: enable

Bit 0	 EP0EN: USB Endpoint 0 control bit
0: disable
1: enable

USB_STAT Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― SE1 SE0 K_state J_state EOP
R/W ― ― ― R/W R/W R/W R/W R/W
POR ― ― ― x x x x x

Bit 7~5	 Unimplemented
Bit 4	 SE1: USB SE1 noise indication bit

0: no noise
1: noise

This bit is used to indicate the SIE has detected a SE1 noise in the USB Bus. This bit
is set by SIE and cleared by F/W.

Bit 3	 SE0: USB SE0 noise indication bit
0: no noise
1: noise

This bit is used to indicate the SIE has detected a SE0 noise in the USB Bus. This bit
is set by SIE and cleared by F/W.

Bit 2	 K_state: USB SIE K_state indication bit
0: not K_state
1: K_state

This bit is used to indicate the SIE has detected a K_state USB signal in the USB Bus.
This bit is set by SIE and cleared by F/W.

Bit 1	 J_state: USB SIE J_state indication bit
0: not J_state
1: J_state

This bit is used to indicate the SIE has detected a J_state USB signal in the USB Bus.
This bit is set by SIE and cleared by F/W.

Bit 0	 EOP: USB EOP indication bit
0: not EOP
1: EOP

This bit is used to indicate the SIE has detected an EOP USB signal in the USB Bus.
This bit is set by SIE and cleared by F/W.

The USB_STAT Register is used to indicate the present USB signal state.

Rev. 1.00	 54 October 27, 2011 Rev. 1.00	 55 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SIES Register

Bit 7 6 5 4 3 2 1 0
Name NMI ― ― ― ― ― F0_ERR ADR_SET
R/W R/W ― ― ― ― ― R/W R/W
POR 0 ― ― ― ― ― 0 0

Bit 7	 NMI: NAK token interrupt mask flag
0: always has USB interrupt if the USB accesses FIFO0
1: has only USB interrupt, data is transmitted to the PC host or data is received from
the PC Host

This bit is used to control whether the USB interrupt is output to the MCU in a NAK
response to the PC Host IN or OUT token, only for Endpoint0.

Bit 6~2	 Unimplemented
Bit 1	 F0_ERR: FIFO accessed error indicator

0: no error
1: error

This bit is used to indicate that some errors have occurred when the FIFO is accessed.
This bit is set by SIE and should be cleared by firmware.

Bit 0	 ADR_SET: device address updated method control bit
0: update address after an written address to the AWR register
1: update address after PC host read out data

This bit is used to configure the SIE to automatically change the device address with
the value of the Address+Remote_Wake-Up Register.
When this bit is set to “1” by F/W, the SIE will update the device address with the
value of the Address+Remote_Wake-Up Register after the PC Host has successfully
read the data from the device by the IN operation. The SIE will clear the bit after
updating the device address.
Otherwise, when this bit is cleared to “0”, the SIE will update the device address
immediately after an address is written to the Address+Remote_Wake-Up Register.
Default 0.

Rev. 1.00	 54 October 27, 2011 Rev. 1.00	 55 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

MISC Register

Bit 7 6 5 4 3 2 1 0
Name LEN0 READY SCMD SELP1 SELP0 CLEAR TX REQ
R/W R R R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7	 LEN0: 0-sized packet indication flag
0: not 0-sized packet
1: 0-sized packet

This bit is used to indicate that a 0-sized packet has been sent from a host to the MCU.
This bit should be cleared by firmware.

Bit 6	 Ready: Desired FIFO ready indication flag
0: not ready
1: ready

This bit is used to indicate that the desired endpoint FIFO is ready for operation.
Bit 5	 SCMD: Setup command indication flag

0: not setup command
1: setup command

This bit is used to show that the data in the endpoint FIFO is a SETUP command. This
bit has to be cleared by firmware. That is to say, even if the MCU is busy, the device
will not miss any SETUP commands from the host.

Bit 4~3	 SELP1, SELP0: endpoint FIFO selection bits
00: endpoint FIFO0
01: endpoint FIFO1
10: endpoint FIFO2
11: reserved

Bit 2	 CLEAR: Clear FIFO function control bit
0: disable
1: enable

This bit is used to clear the FIFO, even if the FIFO is not ready.
Bit 1	 TX: data writing to FIFO status indication flag

0: data writing finished
1: data writing to FIFO

This bit defines the direction of data transferring between the MCU and endpoint
FIFO. When the TX is set to “1”, this means that the MCU wants to write data to the
endpoint FIFO. After the task is completed, this bit must be cleared to “0” before
terminating the request to represent the end of transferring. For a read action, this bit
has to be cleared to “0” to represent that MCU wants to read data from the endpoint
FIFO and has to be set to “1” after completion.

Bit 0	 REQUEST: Desired FIFO request status indication flag
0: no request
1: request

After setting the other status of the desired one in the MISC, endpoint FIFO can be
requested by setting this bit to “1”. After the task is completed, this bit must be cleared
to “0”.

Rev. 1.00	 56 October 27, 2011 Rev. 1.00	 57 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

The MCU can communicate with the endpoint FIFO by setting the corresponding registers, of
which the address is listed in the following table. After reading the current data, the next data will
show after 2μs, this is used to check the endpoint FIFO status and response to the MISC register, if
read/write action is still going on.

Registers R/W Bank Address Bit7~Bit0
FIFO0 R/W 1 48H Data7~Data0
FIFO1 R/W 1 49H Data7~Data0
FIFO2 R/W 1 4AH Data7~Data0

There are some timing constrains and usages illustrated here. By setting the MISC register, the MCU
can perform reading, writing and clearing actions. There are some examples shown in the following
table for endpoin FIFO reading, writing and clearing.

Actions MISC Setting Flow and Status

Read FIFO0 sequence 00H→01H→delay 2μs, check 41H→read* from FIFO0
register and check not ready (01H) →03H→02H

Write FIFO1 sequence 0AH→0BH→delay 2μs, check 4BH→write* to FIFO1
register and check not ready (0BH) →09H→08H

Check whether FIFO0 can be read or not 00H→01H→delay 2μs, check 41H (read) or 01H
(not ready) →00H

Check whether FIFO1 can be written or not 0AH→0BH→delay 2μs, check 4BH (read) or 0BH
(not ready) →0AH

Read 0-sized packet sequence from FIFO0 00H→01H→delay 2μs, check 81H→read once
(01H)→03H→S02H

Write 0-sized packet sequence to FIFO1 0AH→0BH→delay 2μs, check 4BH→09H→08H

Note: *: There is a 2μs time between 2 read actions or between 2 write actions.

Rev. 1.00	 56 October 27, 2011 Rev. 1.00	 57 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Serial Interface – SPI
The SPI interface is often used to communicate with external peripheral devices such as sensors,
Flash or EEPROM memory devices etc.. Originally developed by Motorola, the four line SPI
interface is a synchronous serial data interface that has a relatively simple communication protocol
simplifying the programming requirements when communicating with external hardware devices.

The communication is full duplex and operates as a slave/master type, where the device can be
either master or slave. Although the SPI interface specification can control multiple slave devices
from a single master, however this device is provided with only one SCS pin. If the master needs to
control multiple slave devices from a single master, the master can use I/O pins to select the slave
devices.

SPI Interface Operation
The SPI interface is a full duplex synchronous serial data link. It is a four line interface with pin
names SDI, SDO, SCK and SCS. Pins SDI and SDO are the Serial Data Input and Serial Data
Output lines, SCK is the Serial Clock line and SCS is the Slave Select line. As the SPI interface pins
are pin-shared with normal I/O pins, the SPI interface must first be enabled by setting the correct
bits in the SBCR and SPIR registers. The SPI can be disabled or enabled using the SPI_EN bit in
the SPIR register. Communication between devices connected to the SPI interface is carried out in
a slave/master mode with all data transfer initiations being implemented by the master. The Master
also controls the clock signal. As the device only contains a single SCS pin only one slave device
can be utilized.

The SCS pin is controlled by the application program, set the CSEN bit to “1” to enable the SCS pin
function and clear the CSEN bit to “0” to place the SCS pin into a floating state.

� � � � � � � � � � � � � � � � � � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

SPI Master/Slave Connection

� � � � � � � �

� � � � � � �

� � � � � � �

� � � �

� � � � � � � � �
 � � � � � � � � �

� � � 	
� � � � � �

� � � � � � � �

� � � � � � � � �

� � � � �
� � � � � � � � �
 � � 	

� � � �
 � �

� � � � �
� � �
 � � � � � � � � �
 � � �

� � � � � � �

� � � � � � �

� �
 � � �
 �
� � � � � �� � � � ­ � �

� � � � � � �

� � � � � � � � � ­ � �
� � � � � � � � � ­ � �

SPI Block Diagram

Rev. 1.00	 58 October 27, 2011 Rev. 1.00	 59 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

The SPI function in this device offers the following features:

•	 Full duplex synchronous data transfer

•	 Both Master and Slave modes

•	 LSB first or MSB first data transmission modes

•	 Transmission complete flag

•	 Rising or falling active clock edge

The status of the SPI interface pins is determined by a number of factors such as whether the device
is in the master or slave mode and upon the condition of certain control bits such as SPI_CSEN and
SPI_EN.

SPI Registers
There are three internal registers which control the overall operation of the SPI interface. These are
the SBDR data register and two registers SPIR and SBCR.

Register
Name

Bit

7 6 5 4 3 2 1 0
SPIR ― ― ― ― SPI_EN SPI_CSEN SPI_MODE SPI_CPOL
SBCR CKS M1 M0 SBEN MLS CSEN WCOL TRF
SBDR D7 D6 D5 D4 D3 D2 D1 D0

The SBDR register is used to store the data being transmitted and received. Before the device writes
data to the SPI bus, the actual data to be transmitted must be placed in the SBDR register. After the
data is received from the SPI bus, the device can read it from the SBDR register. Any transmission
or reception of data from the SPI bus must be made via the SBDR register.

SBDR Register

Bit 7 6 5 4 3 2 1 0
Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W RW
POR X X X X X X X X

Bit 7~0	 D7~D0: SPI data bits
Note that data written to the SBDR register will only be written to the TXRX buffer, whereas data
read from the SBDR register will actual be read from the register.

There are also two control registers for the SPI interface, SPIR and SBCR. Register SPIR is used to
control the enable/disable function and to set the SPI clock active edge type. Register SBCR is used
for other control functions such as LSB/MSB selection, write collision flag, data transmission clock
frequency selection etc..

Rev. 1.00	 58 October 27, 2011 Rev. 1.00	 59 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SPIR Register

Bit 7 6 5 4 3 2 1 0
Name ― ― ― ― SPI_EN SPI_CSEN SPI_MODE SPI_CPOL
R/W ― ― ― ― R/W R/W R/W R/W
POR ― ― ― ― 0 0 0 0

Bit 7~4	 Unimplemented
Bit 3	 SPI_EN: SPI interface pins control

0: I/O mode (default)
1: SPI mode

Bit 2	 SPI_CSEN: SPI software bit CSEN function control
0: disable. The CSEN bit has no effect on the SCS pin and the SCS pin is used as an
I/O pin

1: enable. The CSEN bit is used as the enable/disable control for the SCS pin
Bit 1	 SPI_MODE: Determines SPI clock SCK active clock edge type

SPI_CPOL=0
0: SCK is high base level and data capture at SCK rising edge
1: SCK is high base level and data capture at SCK falling edge

SPI_CPOL=1
0: SCK is low base level and data capture at SCK falling edge
1: SCK is low base level and data capture at SCK rising edge

The SPI_MODE and SPI_CPOL bits are used to setup the way that the clock signal
outputs and inputs data on the SPI bus. These two bits must be configured before
data transfer is executed otherwise an erroneous clock edge may be generated. The
SPI_CPOL bit determines the base condition of the clock line. If the bit is high, then
the SCK line will be low when the clock is inactive. When the SPI_CPOL bit is
low, then the SCK line will be high when the clock is inactive. The SPI_MODE bit
determines active clock edge type which depends upon the condition of SPI_CPOL
bit.

Bit 0	 SPI_CPOL: Determines the base condition of the SPI clock line SCK
0: the SCK line will be high when the SPI clock is inactive
1: the SCK line will be low when the SPI clock is inactive

The SPI_CPOL bit determines the base condition of the SPI clock line, if the bit is
high, then the SCK line will be low when the clock is inactive. When the SPI_CPOL
bit is low, then the SCK line will be high when the clock is inactive.

Rev. 1.00	 60 October 27, 2011 Rev. 1.00	 61 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SBCR Register

Bit 7 6 5 4 3 2 1 0
Name CKS M1 M0 SBEN MLS CSEN WCOL TRF
R/W R/W R/W R/W R/W R/W R/W R/W RW
POR 0 1 1 0 0 0 0 0

Bit 7	 CKS: SPI clock fSPI source selection
0: fSPI=fSYS/2
1: fSPI=fSYS

Bit 6~5	 M1~M0: SPI Operating Mode and baud rate control bits
00: SPI master mode; SPI clock is fSPI

01: SPI master mode; SPI clock is fSPI/4
10: SPI master mode; SPI clock is fSPI/16
11: SPI slave mode

This bit can be read or written by user software program.
Bit 4	 SBEN: SPI serial bus enable control

0: disable
1: enable

The bit is the overall on/off control for the SPI serial bus. When the SBEN bit is
cleared to zero to disable the SPI interface, the SDI, SDO, SCK and SCS lines will
be in a floating condition and the SPI operating current will be reduced to a minimum
value. When the bit is high, the SPI interface is enabled.

Bit 3	 MLS: SPI Data shift order
0: LSB shift first
1: MSB shift first

This is the data shift select bit and is used to select how the data is transferred, either
MSB or LSB first. Setting the bit high will select MSB first and low for LSB first.

Bit 2	 CSEN: SPI SCS pin control
0: disable, other functions
1: enable

The CSEN bit is used as an enable/disable for the SCS pin. If this bit is low, then the
SCS pin will be disabled and placed into a floating condition. If the bit is high the SCS
pin will be enabled and used as a select pin.
Note that using the CSEN bit can be disabled or enabled by the CSEN control bit
named SPI_CSEN in the SPIR register.

Bit 1	 WCOL: SPI Write Collision flag
0: collision free
1: collision detected

The WCOL flag is used to detect if a data collision has occurred. If this bit is high it
means that data has been attempted to be written to the SBDR register during a data
transfer operation. This writing operation will be ignored if data is being transferred.
The bit can be cleared by the application program.

Bit 0	 TRF: SPI Transmit/Receive Complete flag
0: not complete
1: transmission/reception complete

The TRF bit is the Transmit/Receive Complete flag and is set to 1 automatically when
an SPI data transmission is completed, but must be set to 0 by the application program.
It can be used to generate an interrupt.

Rev. 1.00	 60 October 27, 2011 Rev. 1.00	 61 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SPI Communication
After the SPI interface is enabled by setting the SPI_EN bit high, then in the Master Mode, when
data is written to the SBDR register, transmission/reception will begin simultaneously. When the
data transfer is complete, the TRF flag will be set automatically, but must be cleared using the
application program. In the Slave Mode, when the clock signal from the master has been received,
any data in the SBDR register will be transmitted and any data on the SDI pin will be shifted into
the SBDR register. The master should output an SCS signal to enable the slave device before a
clock signal is provided. The slave data to be transferred should be well prepared at the appropriate
moment relative to the SCS signal depending upon the options of the SPI_MODE bit and SPI_CPOL
bit. The accompanying timing diagram shows the relationship between the slave data and SCS signal
for various configurations of the SPI_MODE and SPI_CPOL bits.

The SPI will continue to function even in the IDLE Mode.

Rev. 1.00	 62 October 27, 2011 Rev. 1.00	 63 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

SPI master mode timing

SDI Data capture

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

SPI slave mode timing(SPI_MODE=0)

SDI Data capture

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

(SDO change as soon as writing occur; SDO=floating if SCS=1)

SDI Data capture

SCS SBEN, CSEN=1

Write to SBDR

SCK (SPI_CPOL=1
SPI_MODE=0)

SDO

SCK

SCK

SDO

SCS

SCK ()

SCK ()

SCK ()

SDO

Write to SBDR

Write to SBDR

SCK

SCK

SDO

SCS

SBEN=1, CSEN=0 (external pull-high)

SPI_CPOL=0
SPI_MODE=0

SPI_CPOL=1
SPI_MODE=1

SPI_CPOL=0
SPI_MODE=1

SPI_MODE=0

SPI_MODE=1

SPI slave mode timing(SPI_MODE=1)

Note:
 For SPI slave mode, If SBEN=1 and CSEN=0, SPI is
 always enabled and ignore the SCS level

(

()

)

(SDO not change Until first SCK edge)

(SPI_CPOL=1)

(SPI_CPOL=0)

(SPI_CPOL=1)

()SPI_CPOL=0

Rev. 1.00	 62 October 27, 2011 Rev. 1.00	 63 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SBEN=1

write data into
SBDR

WCOL=1?

clear WCOL

Y

transmission
completed?
(TRF=1?)

N

Y

read data from
SBDR

clear TRF

transfer finished? N

Y

END

master or slavemaster slave

A

A SPI transfer

Configure CSEN
and MLS

M1 M0=11M1 M0
= 00,01,10

Setup CKS

FSPI=Fsys/1,/2

SPI Transfer Control Flowchart

SPI Bus Enable/Disable
To enable the SPI bus, set SBEN =1, CSEN = 1 and SCS=0, then wait for data to be written into the
SBDR (TXRX buffer) register. For the Master Mode, after data has been written to the SBDR (TXRX
buffer) register, then transmission or reception will start automatically. When all the data has been
transferred the TRF bit should be set. For the Slave Mode, when clock pulses are received on SCK,
data in the TXRX buffer will be shifted out or data on SDI will be shifted in.

To Disable the SPI bus SCK, SDI, SDO, SCS should be in a floating condition.

Rev. 1.00	 64 October 27, 2011 Rev. 1.00	 65 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SPI Operation
All communication is carried out using the 4-line interface for either Master or Slave Mode.

The CSEN bit in the SBCR register controls the overall function of the SPI interface. Setting this
bit high will enable the SPI interface by allowing the SCS line to be active, which can then be
used to control the SPI interface. If the CSEN bit is low, the SPI interface will be disabled and
the SCS line will be in a floating condition and can therefore not be used for control of the SPI
interface. The SBEN bit in the SBCR register must also be high which will place the SDI line in a
floating condition and the SDO line high. If in Master Mode the SCK line will be either high or low
depending upon the clock polarity selection bit SPI_CPOL in the SPIR register. If in Slave Mode the
SCK line will be in a floating condition. If SBEN is low then the bus will be disabled and SCS, SDI,
SDO and SCK will all be in a floating condition.

In the Master Mode the Master will always generate the clock signal. The clock and data
transmission will be initiated after data has been written into the SBDR register. In the Slave Mode,
the clock signal will be received from an external master device for both data transmission and
reception. The following sequences show the order to be followed for data transfer in both Master
and Slave Mode:

Master Mode:
•	 Step 1
Select the clock source using the CKS bit in the SBCR control register

•	 Step 2
Setup the M0 and M1 bits in the SBCR control register to select the Master Mode and the required
Baud rate. Values of 00, 01 or 10 can be selected.

•	 Step 3
Setup the CSEN bit and setup the MLS bit to choose if the data is MSB or LSB first, this must be
same as the Slave device.

•	 Step 4
Setup the SBEN bit in the SBCR control register to enable the SPI interface.

•	 Step 5
For write operations: write the data to the SBDR register, which will actually place the data into
the TXRX buffer. Then use the SCK and SCS lines to output the data. After this go to step6.
For read operations: the data transferred in on the SDI line will be stored in the TXRX buffer until
all the data has been received at which point it will be latched into the SBDR register.

•	 Step 6
Check the WCOL bit if set high then a collision error has occurred so return to step5. If equal to
zero then go to the following step.

•	 Step 7
Check the TRF bit or wait for a SPI serial bus interrupt.

•	 Step 8
Read data from the SBDR register.

•	 Step 9
Clear TRF.

•	 Step10
Go to step 5.

Rev. 1.00	 64 October 27, 2011 Rev. 1.00	 65 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Slave Mode:
•	 Step 1
The CKS bit has a “don’t care” value in the slave mode.

•	 Step 2
Setup the M0 and M1 bits in the SBCR control register to 11 to select the Slave Mode. The CKS
bit is don’t care.

•	 Step 3
Setup the CSEN bit and setup the MLS bit to choose if the data is MSB or LSB first, this must be
same as the Master device.

•	 Step 4
Setup the SBEN bit in the SBCR control register to enable the SPI interface.

•	 Step 5
For write operations: write the data to the SBDR register, which will actually place the data into
the TXRX buffer. Then wait for the master clock SCK and SCS signal. After this go to step6.
For read operations: the data transferred in on the SDI line will be stored in the TXRX buffer until
all the data has been received at which point it will be latched into the SBDR register.

•	 Step 6
Check the WCOL bit if set high then a collision error has occurred so return to step5. If equal to
zero then go to the following step.

•	 Step 7
Check the TRF bit or wait for a SPI serial bus interrupt.

•	 Step 8
Read data from the SBDR register.

•	 Step 9
Clear TRF.

•	 Step10
Go to step 5.

Error Detection
The WCOL bit in the SBCR register is provided to indicate errors during data transfer. The bit is
set by the SPI serial Interface but must be cleared by the application program. This bit indicates a
data collision has occurred which happens if a write to the SBDR register takes place during a data
transfer operation and will prevent the write operation from continuing.

Rev. 1.00	 66 October 27, 2011 Rev. 1.00	 67 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Configuration Options
No. Options
1 PA0~7 Pull-high by bit (default Pull-high)
2 PB wake-up by nibble (default Pull-high)
3 PB Pull-high by nibble (default Pull-high)
4 LVR enable/disable (default enable)
5 WDT function: enable, disable for normal mode (default enable)
6 WDT clock source: RC; fSYS/4 (default T1)
7 CLRWDT instruction is by 1 or 2
8 PA output mode (CMOS/NMOS/PMOS) by bit (default CMOS)
9 PA0~7 wake-up by bit (default enable)

10 TBHP enable/disable (default disable)
11 PE0, PE1 Pull-high by bit
12 PE0, PE1, PE2 wake-up by bit
13 PA0~7 Power source: VDD (default VDD)/V33O regulator output
14 PE2/RES pin option (default RES pin)

Application Circuit

� � � � � � �

� � � � � � � �

� � � �

� � �

� � � �
� � � �
� � �

�
 � � �

� � �

 	 �

� � �

�
 � � �

� � � � �� � � � �
 � � �

� � � � � � �
� � � � � � �

� 	 � � � 	 �

� � � �

� � � � � � � �

Note: The resistance and capacitance for the reset circuit should be designed in such a way as to
ensure that the VDD is stable and remains within a valid operating voltage range before
bringing RES high.

Rev. 1.00	 66 October 27, 2011 Rev. 1.00	 67 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Instruction Set

Introduction
Central to the successful operation of any microcontroller is its instruction set, which is a set of
program instruction codes that directs the microcontroller to perform certain operations. In the case
of Holtek microcontrollers, a comprehensive and flexible set of over 60 instructions is provided to
enable programmers to implement their application with the minimum of programming overheads.

For easier understanding of the various instruction codes, they have been subdivided into several
functional groupings.

Instruction Timing
Most instructions are implemented within one instruction cycle. The exceptions to this are branch,
call, or table read instructions where two instruction cycles are required. One instruction cycle is
equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instructions
would be implemented within 0.5µs and branch or call instructions would be implemented within
1µs. Although instructions which require one more cycle to implement are generally limited to
the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other
instructions which involve manipulation of the Program Counter Low register or PCL will also take
one more cycle to implement. As instructions which change the contents of the PCL will imply a
direct jump to that new address, one more cycle will be required. Examples of such instructions
would be ″CLR PCL″ or ″MOV PCL, A″. For the case of skip instructions, it must be noted that if
the result of the comparison involves a skip operation then this will also take one more cycle, if no
skip is involved then only one cycle is required.

Moving and Transferring Data
The transfer of data within the microcontroller program is one of the most frequently used
operations. Making use of three kinds of MOV instructions, data can be transferred from registers to
the Accumulator and vice-versa as well as being able to move specific immediate data directly into
the Accumulator. One of the most important data transfer applications is to receive data from the
input ports and transfer data to the output ports.

Arithmetic Operations
The ability to perform certain arithmetic operations and data manipulation is a necessary feature of
most microcontroller applications. Within the Holtek microcontroller instruction set are a range of
add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out. Care
must be taken to ensure correct handling of carry and borrow data when results exceed 255 for
addition and less than 0 for subtraction. The increment and decrement instructions INC, INCA, DEC
and DECA provide a simple means of increasing or decreasing by a value of one of the values in the
destination specified.

Rev. 1.00	 68 October 27, 2011 Rev. 1.00	 69 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Logical and Rotate Operations
The standard logical operations such as AND, OR, XOR and CPL all have their own instruction
within the Holtek microcontroller instruction set. As with the case of most instructions involving
data manipulation, data must pass through the Accumulator which may involve additional
programming steps. In all logical data operations, the zero flag may be set if the result of the
operation is zero. Another form of logical data manipulation comes from the rotate instructions such
as RR, RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different
rotate instructions exist depending on program requirements. Rotate instructions are useful for serial
port programming applications where data can be rotated from an internal register into the Carry
bit from where it can be examined and the necessary serial bit set high or low. Another application
where rotate data operations are used is to implement multiplication and division calculations.

Branches and Control Transfer
Program branching takes the form of either jumps to specified locations using the JMP instruction or
to a subroutine using the CALL instruction. They differ in the sense that in the case of a subroutine
call, the program must return to the instruction immediately when the subroutine has been carried
out. This is done by placing a return instruction RET in the subroutine which will cause the program
to jump back to the address right after the CALL instruction. In the case of a JMP instruction, the
program simply jumps to the desired location. There is no requirement to jump back to the original
jumping off point as in the case of the CALL instruction. One special and extremely useful set
of branch instructions are the conditional branches. Here a decision is first made regarding the
condition of a certain data memory or individual bits. Depending upon the conditions, the program
will continue with the next instruction or skip over it and jump to the following instruction. These
instructions are the key to decision making and branching within the program perhaps determined
by the condition of certain input switches or by the condition of internal data bits.

Bit Operations
The ability to provide single bit operations on Data Memory is an extremely flexible feature of all
Holtek microcontrollers. This feature is especially useful for output port bit programming where
individual bits or port pins can be directly set high or low using either the ″SET [m].i″ or ″CLR [m].i″
instructions respectively. The feature removes the need for programmers to first read the 8-bit output
port, manipulate the input data to ensure that other bits are not changed and then output the port with
the correct new data. This read-modify-write process is taken care of automatically when these bit
operation instructions are used.

Table Read Operations
Data storage is normally implemented by using registers. However, when working with large
amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in
the Data Memory. To overcome this problem, Holtek microcontrollers allow an area of Program
Memory to be setup as a table where data can be directly stored. A set of easy to use instructions
provides the means by which this fixed data can be referenced and retrieved from the Program
Memory.

Other Operations
In addition to the above functional instructions, a range of other instructions also exist such as
the ″HALT″ instruction for Power-down operations and instructions to control the operation of
the Watchdog Timer for reliable program operations under extreme electric or electromagnetic
environments. For their relevant operations, refer to the functional related sections.

Rev. 1.00	 68 October 27, 2011 Rev. 1.00	 69 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Instruction Set Summary
The following table depicts a summary of the instruction set categorised according to function and
can be consulted as a basic instruction reference using the following listed conventions.

Table conventions:	
x: Bits immediate data	
m: Data Memory address	
A: Accumulator	
i: 0~7 number of bits	
addr: Program memory address

Mnemonic Description Cycles Flag Affected
Arithmetic
ADD A,[m] Add Data Memory to ACC 1 Z, C, AC, OV
ADDM A,[m] Add ACC to Data Memory 1Note Z, C, AC, OV
ADD A,x Add immediate data to ACC 1 Z, C, AC, OV
ADC A,[m] Add Data Memory to ACC with Carry 1 Z, C, AC, OV
ADCM A,[m] Add ACC to Data memory with Carry 1Note Z, C, AC, OV
SUB A,x Subtract immediate data from the ACC 1 Z, C, AC, OV
SUB A,[m] Subtract Data Memory from ACC 1 Z, C, AC, OV
SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory 1Note Z, C, AC, OV
SBC A,[m] Subtract Data Memory from ACC with Carry 1 Z, C, AC, OV
SBCM A,[m] Subtract Data Memory from ACC with Carry, result in Data Memory 1Note Z, C, AC, OV
DAA [m] Decimal adjust ACC for Addition with result in Data Memory 1Note C
Logic Operation
AND A,[m] Logical AND Data Memory to ACC 1 Z
OR A,[m] Logical OR Data Memory to ACC 1 Z
XOR A,[m] Logical XOR Data Memory to ACC 1 Z
ANDM A,[m] Logical AND ACC to Data Memory 1Note Z
ORM A,[m] Logical OR ACC to Data Memory 1Note Z
XORM A,[m] Logical XOR ACC to Data Memory 1Note Z
AND A,x Logical AND immediate Data to ACC 1 Z
OR A,x Logical OR immediate Data to ACC 1 Z
XOR A,x Logical XOR immediate Data to ACC 1 Z
CPL [m] Complement Data Memory 1Note Z
CPLA [m] Complement Data Memory with result in ACC 1 Z
Increment & Decrement
INCA [m] Increment Data Memory with result in ACC 1 Z
INC [m] Increment Data Memory 1Note Z
DECA [m] Decrement Data Memory with result in ACC 1 Z
DEC [m] Decrement Data Memory 1Note Z
Rotate
RRA [m] Rotate Data Memory right with result in ACC 1 None
RR [m] Rotate Data Memory right 1Note None
RRCA [m] Rotate Data Memory right through Carry with result in ACC 1 C
RRC [m] Rotate Data Memory right through Carry 1Note C
RLA [m] Rotate Data Memory left with result in ACC 1 None
RL [m] Rotate Data Memory left 1Note None
RLCA [m] Rotate Data Memory left through Carry with result in ACC 1 C
RLC [m] Rotate Data Memory left through Carry 1Note C

Rev. 1.00	 70 October 27, 2011 Rev. 1.00	 71 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Mnemonic Description Cycles Flag Affected
Data Move
MOV A,[m] Move Data Memory to ACC 1 None
MOV [m],A Move ACC to Data Memory 1Note None
MOV A,x Move immediate data to ACC 1 None
Bit Operation
CLR [m].i Clear bit of Data Memory 1Note None
SET [m].i Set bit of Data Memory 1Note None
Branch
JMP addr Jump unconditionally 2 None
SZ [m] Skip if Data Memory is zero 1Note None
SZA [m] Skip if Data Memory is zero with data movement to ACC 1Note None
SZ [m].i Skip if bit i of Data Memory is zero 1Note None
SNZ [m].i Skip if bit i of Data Memory is not zero 1Note None
SIZ [m] Skip if increment Data Memory is zero 1Note None
SDZ [m] Skip if decrement Data Memory is zero 1Note None
SIZA [m] Skip if increment Data Memory is zero with result in ACC 1Note None
SDZA [m] Skip if decrement Data Memory is zero with result in ACC 1Note None
CALL addr Subroutine call 2 None
RET Return from subroutine 2 None
RET A,x Return from subroutine and load immediate data to ACC 2 None
RETI Return from interrupt 2 None
Table Read
TABRDC [m](4) Read ROM code(locate by TBLP and TBHP) to data memory and TBLH 2Note None
TABRDC [m](5) Read ROM code(current page) to data memory and TBLH 2Note None
TABRDL [m] Read table (last page) to TBLH and Data Memory 2Note None
Miscellaneous
NOP No operation 1 None
CLR [m] Clear Data Memory 1Note None
SET [m] Set Data Memory 1Note None
CLR WDT Clear Watchdog Timer 1 TO, PDF
CLR WDT1 Pre-clear Watchdog Timer 1 TO, PDF
CLR WDT2 Pre-clear Watchdog Timer 1 TO, PDF
SWAP [m] Swap nibbles of Data Memory 1Note None
SWAPA [m] Swap nibbles of Data Memory with result in ACC 1 None
HALT Enter power down mode 1 TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required, if no
skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

3. For the "CLR WDT1" and "CLR WDT2" instructions the TO and PDF flags may be affected by the
execution status. The TO and PDF flags are cleared after both "CLR WDT1" and "CLR WDT2"
instructions are consecutively executed. Otherwise the TO and PDF flags remain unchanged.

4. "TBHP option" is enabled by Configuration Option.

5. "TBHP option" is disabled by Configuration Option.

Rev. 1.00	 70 October 27, 2011 Rev. 1.00	 71 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Instruction Definition
Add Data Memory to ACC with Carry
The contents of the specified Data Memory, Accumulator and the carry flag are
added. The result is stored in the Accumulator.
ACC ← ACC + [m] + C
OV, Z, AC, C

Add ACC to Data Memory with Carry
The contents of the specified Data Memory, Accumulator and the carry flag are
added. The result is stored in the specified Data Memory.
[m] ← ACC + [m] + C
OV, Z, AC, C

Add Data Memory to ACC
The contents of the specified Data Memory and the Accumulator are added. The
result is stored in the Accumulator.
ACC ← ACC + [m]
OV, Z, AC, C

Add immediate data to ACC
The contents of the Accumulator and the specified immediate data are added. The
result is stored in the Accumulator.
AC ← ACC + x
OV, Z, AC, C

Add ACC to Data Memory
The contents of the specified Data Memory and the Accumulator are added. The
result is stored in the specified Data Memory.
[m] ← ACC + [m]
OV, Z, AC, C

Logical AND Data Memory to ACC
Data in the Accumulator and the specified Data Memory perform a bitwise logical
AND operation. The result is stored in the Accumulator.
ACC ← ACC "AND"� [m]
Z

Logical AND immediate data to ACC
Data in the Accumulator and the specified immediate data perform a bitwise
logical AND operation. The result is stored in the Accumulator.
ACC ← ACC "�AND"�x
Z

Logical AND ACC to Data Memory
Data in the specified Data Memory and the Accumulator perform a bitwise logical
AND operation. The result is stored in the Data Memory.
[m] ← ACC "�AND"� [m]
Z

ADC A,[m]
Description

Operation
Affected flag(s)

ADCM A,[m]
Description

Operation
Affected flag(s)

ADD A,[m]
Description

Operation
Affected flag(s)

ADD A,x
Description

Operation
Affected flag(s)

ADDM A,[m]
Description

Operation
Affected flag(s)

AND A,[m]
Description

Operation
Affected flag(s)

AND A,x
Description

Operation
Affected flag(s)

ANDM A,[m]
Description

Operation
Affected flag(s)

Rev. 1.00	 72 October 27, 2011 Rev. 1.00	 73 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Subroutine call
Unconditionally calls a subroutine at the specified address. The Program Counter
then increments by 1 to obtain the address of the next instruction which is then
pushed onto the stack. The specified address is then loaded and the program
continues execution from this new address. As this instruction requires an
additional operation, it is a two cycle instruction.
Stack ← Program Counter + 1
Program Counter ← addr
None

Clear Data Memory
Each bit of the specified Data Memory is cleared to 0.
[m] ← 00H
None

Clear bit of Data Memory
Bit i of the specified Data Memory is cleared to 0.
[m].i ← 0
None

Clear Watchdog Timer
The TO, PDF flags and the WDT are all cleared.
WDT cleared
TO ← 0
PDF ← 0
TO, PDF

Pre-clear Watchdog Timer
The TO, PDF flags and the WDTare all cleared. Note that this instruction works in
conjunction with CLR WDT2 and must be executed alternately with CLR WDT2
to have effect. Repetitively executing this instruction without alternately executing
CLR WDT2 will have no effect.
WDT cleared
TO ← 0
PDF ← 0
TO, PDF

Pre-clear Watchdog Timer
The TO, PDF flags and the WDTare all cleared. Note that this instruction works in
conjunction with CLR WDT1 and must be executed alternately with CLR WDT1
to have effect. Repetitively executing this instruction without alternately executing
WDT cleared
TO ← 0
PDF ← 0
TO, PDF

CALL addr
Description

Operation

Affected flag(s)

CLR [m]
Description
Operation
Affected flag(s)

CLR [m].i
Description
Operation
Affected flag(s)

CLR WDT
Description
Operation

Affected flag(s)

CLR WDT1
Description

Operation

Affected flag(s)

CLR WDT2
Description

Operation

Affected flag(s)

Rev. 1.00	 72 October 27, 2011 Rev. 1.00	 73 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Complement Data Memory
Each bit of the specified Data Memory is logically complemented (1's
complement). Bits which previously contained a 1 are changed to 0 and vice
versa.
[m] ← [m]
Z

Complement Data Memory with result in ACC
Each bit of the specified Data Memory is logically complemented (1's
complement). Bits which previously contained a 1 are changed to 0 and vice
versa. The complemented result is stored in the Accumulator and the contents of
the Data Memory remain unchanged.
ACC ← [m]
Z

Decimal-Adjust ACC for addition with result in Data Memory
Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal)
value resulting from the previous addition of two BCD variables. If the low nibble
is greater than 9 or if AC flag is set, then a value of 6 will be added to the low
nibble. Otherwise the low nibble remains unchanged. If the high nibble is greater
than 9 or if the C flag is set, then a value of 6 will be added to the high nibble.
Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or
66H depending on the Accumulator and flag conditions. Only the C flag may be
affected by this instruction which indicates that if the original BCD sum is greater
than 100, it allows multiple precision decimal addition.
[m] ← ACC + 00H or
[m] ← ACC + 06H or
[m] ← ACC + 60H or
[m] ← ACC + 66H
C

Decrement Data Memory
Data in the specified Data Memory is decremented by 1.
[m] ← [m] ― 1
Z

Decrement Data Memory with result in ACC
Data in the specified Data Memory is decremented by 1. The result is stored in
the Accumulator. The contents of the Data Memory remain unchanged.
ACC ← [m] ― 1
Z

CPL [m]
Description

Operation
Affected flag(s)

CPLA [m]
Description

Operation
Affected flag(s)

DAA [m]
Description

Operation

Affected flag(s)

DEC [m]
Description
Operation
Affected flag(s)

DECA [m]
Description

Operation
Affected flag(s)

Rev. 1.00	 74 October 27, 2011 Rev. 1.00	 75 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Enter power down mode
This instruction stops the program execution and turns off the system clock. The
contents of the Data Memory and registers are retained. The WDT and prescaler
are cleared. The power down flag PDF is set and the WDT time-out flag TO is
cleared.
TO ← 0
PDF ← 0
TO, PDF

Increment Data Memory
Data in the specified Data Memory is incremented by 1.
[m] ← [m]+1
Z

Increment Data Memory with result in ACC
Data in the specified Data Memory is incremented by 1. The result is stored in the
Accumulator. The contents of the Data Memory remain unchanged.
ACC ← [m]+1
Z

Jump unconditionally
The contents of the Program Counter are replaced with the specified address.
Program execution then continues from this new address. As this requires the
insertion of a dummy instruction while the new address is loaded, it is a two cycle
instruction.
Program Counter ← addr
None

Move Data Memory to ACC
The contents of the specified Data Memory are copied to the Accumulator.
ACC ← [m]
None

Move immediate data to ACC
The immediate data specified is loaded into the Accumulator.
ACC ← x
None

Move ACC to Data Memory
The contents of the Accumulator are copied to the specified Data Memory.
[m] ← ACC
None

No operation
No operation is performed. Execution continues with the next instruction.
No operation
None

HALT
Description

Operation

Affected flag(s)

INC [m]
Description
Operation
Affected flag(s)

INCA [m]
Description

Operation
Affected flag(s)

JMP addr
Description

Operation
Affected flag(s)

MOV A,[m]
Description
Operation
Affected flag(s)

MOV A,x
Description
Operation
Affected flag(s)

MOV [m],A
Description
Operation
Affected flag(s)

NOP
Description
Operation
Affected flag(s)

Rev. 1.00	 74 October 27, 2011 Rev. 1.00	 75 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Logical OR Data Memory to ACC
Data in the Accumulator and the specified Data Memory perform a bitwise logical
OR operation. The result is stored in the Accumulator.
ACC ← ACC "�OR" [m]
Z

Logical OR immediate data to ACC
Data in the Accumulator and the specified immediate data perform a bitwise
logical OR operation. The result is stored in the Accumulator.
ACC ← ACC "�OR�" x
Z

Logical OR ACC to Data Memory
Data in the specified Data Memory and the Accumulator perform a bitwise logical
OR operation. The result is stored in the Data Memory.
[m] ← ACC "�OR�" [m]
Z

Return from subroutine
The Program Counter is restored from the stack. Program execution continues at
the restored address.
Program Counter ← Stack
None

Return from subroutine and load immediate data to ACC
The Program Counter is restored from the stack and the Accumulator loaded
with the specified immediate data. Program execution continues at the restored
address.
Program Counter ← Stack
ACC ← x
None

Return from interrupt
The Program Counter is restored from the stack and the interrupts are re-enabled
by setting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt
was pending when the RETI instruction is executed, the pending Interrupt routine
will be processed before returning to the main program.
Program Counter ← Stack
EMI ← 1
None

Rotate Data Memory left
The contents of the specified Data Memory are rotated left by 1 bit with bit 7
rotated into bit 0.
[m].(i+1) ← [m].i; (i = 0~6)
[m].0 ← [m].7
None

OR A,[m]
Description

Operation
Affected flag(s)

OR A,x
Description

Operation
Affected flag(s)

ORM A,[m]
Description

Operation
Affected flag(s)

RET
Description

Operation
Affected flag(s)

RET A,x
Description

Operation

Affected flag(s)

RETI
Description

Operation

Affected flag(s)

RL [m]
Description

Operation

Affected flag(s)

Rev. 1.00	 76 October 27, 2011 Rev. 1.00	 77 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

.

Rotate Data Memory left with result in ACC
The contents of the specified Data Memory are rotated left by 1 bit with bit 7
rotated into bit 0. The rotated result is stored in the Accumulator and the contents
of the Data Memory remain unchanged.
ACC.(i+1) ← [m].i; (i = 0~6)
ACC.0 ← [m].7
None

Rotate Data Memory left through Carry
The contents of the specified Data Memory and the carry flag are rotated left by 1
bit. Bit 7 replaces the Carry bit and the original carry flag is rotated into bit 0.
[m].(i+1) ← [m].i; (i = 0~6)
[m].0 ← C
C ← [m].7
C

Rotate Data Memory left through Carry with result in ACC
Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit
7 replaces the Carry bit and the original carry flag is rotated into the bit 0. The
rotated result is stored in the Accumulator and the contents of the Data Memory
remain unchanged.
ACC.(i+1) ← [m].i; (i = 0~6)
ACC.0 ← C
C ← [m].7
C

Rotate Data Memory right
The contents of the specified Data Memory are rotated right by 1 bit with bit 0
rotated into bit 7.
[m].i ← [m].(i+1); (i = 0~6)
[m].7 ← [m].0
None

Rotate Data Memory right with result in ACC
Data in the specified Data Memory and the carry flag are rotated right by 1 bit
with bit 0 rotated into bit 7. The rotated result is stored in the Accumulator and the
contents of the Data Memory remain unchanged.
ACC.i ← [m].(i+1); (i = 0~6)
ACC.7 ← [m].0
None

Rotate Data Memory right through Carry
The contents of the specified Data Memory and the carry flag are rotated right by
1 bit. Bit 0 replaces the Carry bit and the original carry flag is rotated into bit 7.
[m].i ← [m].(i+1); (i = 0~6)
[m].7 ← C
C ← [m].0
C

RLA [m]
Description

Operation

Affected flag(s)

RLC [m]
Description

Operation

Affected flag(s)

RLCA [m]
Description

Operation

Affected flag(s)

RR [m]
Description

Operation

Affected flag(s)

RRA [m]
Description

Operation

Affected flag(s)

RRC [m]
Description

Operation

Affected flag(s)

Rev. 1.00	 76 October 27, 2011 Rev. 1.00	 77 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Rotate Data Memory right through Carry with result in ACC
Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit
0 replaces the Carry bit and the original carry flag is rotated into bit 7. The rotated
result is stored in the Accumulator and the contents of the Data Memory remain
unchanged.
ACC.i ← [m].(i+1); (i = 0~6)
ACC.7 ← C
C ← [m].0
C

Subtract Data Memory from ACC with Carry
The contents of the specified Data Memory and the complement of the carry flag
are subtracted from the Accumulator. The result is stored in the Accumulator. Note
that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise
if the result is positive or zero, the C flag will be set to 1.
ACC ← ACC ― [m] ― C
OV, Z, AC, C

Subtract Data Memory from ACC with Carry and result in Data Memory
The contents of the specified Data Memory and the complement of the carry flag
are subtracted from the Accumulator. The result is stored in the Data Memory. Note
that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise
if the result is positive or zero, the C flag will be set to 1.
ACC ← ACC ― [m] ― C
OV, Z, AC, C

Skip if decrement Data Memory is 0
The contents of the specified Data Memory are first decremented by 1. If the result
is 0 the following instruction is skipped. As this requires the insertion of a dummy
instruction while the next instruction is fetched, it is a two cycle instruction. If the
result is not 0 the program proceeds with the following instruction.
[m] ← [m] ― 1
Skip if [m] = 0
None

Skip if decrement Data Memory is zero with result in ACC
The contents of the specified Data Memory are first decremented by 1. If the result
is 0, the following instruction is skipped. The result is stored in the Accumulator
but the specified Data Memory contents remain unchanged. As this requires the
insertion of a dummy instruction while the next instruction is fetched, it is a two
cycle instruction. If the result is not 0, the program proceeds with the following
instruction.
ACC ← [m] ― 1
Skip if ACC = 0
None

RRCA [m]
Description

Operation

Affected flag(s)

SBC A,[m]
Description

Operation
Affected flag(s)

SBCM A,[m]
Description

Operation
Affected flag(s)

SDZ [m]
Description

Operation

Affected flag(s)

SDZA [m]
Description

Operation

Affected flag(s)

Rev. 1.00	 78 October 27, 2011 Rev. 1.00	 79 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Set Data Memory
Each bit of the specified Data Memory is set to 1.
[m] ← FFH
None

Set bit of Data Memory
Bit i of the specified Data Memory is set to 1.
[m].1 ← 1
None

Skip if increment Data Memory is 0
The contents of the specified Data Memory are first incremented by 1. If the result
is 0, the following instruction is skipped. As this requires the insertion of a dummy
instruction while the next instruction is fetched, it is a two cycle instruction. If the
result is not 0 the program proceeds with the following instruction.
[m] ← [m] + 1
Skip if [m] = 0
None

Skip if increment Data Memory is zero with result in ACC
The contents of the specified Data Memory are first incremented by 1. If the result
is 0, the following instruction is skipped. The result is stored in the Accumulator
but the specified Data Memory contents remain unchanged. As this requires the
insertion of a dummy instruction while the next instruction is fetched, it is a two
cycle instruction. If the result is not 0 the program proceeds with the following
instruction.
ACC ← [m] + 1
Skip if ACC = 0
None

Skip if bit i of Data Memory is not 0
If bit i of the specified Data Memory is not 0, the following instruction is skipped.
As this requires the insertion of a dummy instruction while the next instruction is
fetched, it is a two cycle instruction. If the result is 0 the program proceeds with
the following instruction.
Skip if [m].i ≠ 0
None

Subtract Data Memory from ACC
The specified Data Memory is subtracted from the contents of the Accumulator.
The result is stored in the Accumulator. Note that if the result of subtraction is
negative, the C flag will be cleared to 0, otherwise if the result is positive or zero,
the C flag will be set to 1.
ACC ← ACC ― [m]
OV, Z, AC, C

SET [m]
Description
Operation
Affected flag(s)

SET [m].i
Description
Operation
Affected flag(s)

SIZ [m]
Description

Operation

Affected flag(s)

SIZA [m]
Description

Operation

Affected flag(s)

SNZ [m].i
Description

Operation
Affected flag(s)

SUB A,[m]
Description

Operation
Affected flag(s)

Rev. 1.00	 78 October 27, 2011 Rev. 1.00	 79 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Subtract Data Memory from ACC with result in Data Memory
The specified Data Memory is subtracted from the contents of the Accumulator.
The result is stored in the Data Memory. Note that if the result of subtraction is
negative, the C flag will be cleared to 0, otherwise if the result is positive or zero,
the C flag will be set to 1.
[m] ← ACC ― [m]
OV, Z, AC, C

Subtract immediate data from ACC
The immediate data specified by the code is subtracted from the contents of the
Accumulator. The result is stored in the Accumulator. Note that if the result of
subtraction is negative, the C flag will be cleared to 0, otherwise if the result is
positive or zero, the C flag will be set to 1.

ACC ← ACC ― x
OV, Z, AC, C

Swap nibbles of Data Memory
The low-order and high-order nibbles of the specified Data Memory are
interchanged.
[m].3~[m].0↔[m].7 ~ [m].4
None

Swap nibbles of Data Memory with result in ACC
The low-order and high-order nibbles of the specified Data Memory are
interchanged. The result is stored in the Accumulator. The contents of the Data
Memory remain unchanged.
ACC.3 ~ ACC.0 ← [m].7 ~ [m].4
ACC.7 ~ ACC.4 ← [m].3 ~ [m].0
None

Skip if Data Memory is 0
If the contents of the specified Data Memory is 0, the following instruction is
skipped. As this requires the insertion of a dummy instruction while the next
instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
proceeds with the following instruction.
Skip if [m] = 0
None

Skip if Data Memory is 0 with data movement to ACC
The contents of the specified Data Memory are copied to the Accumulator. If the
value is zero, the following instruction is skipped. As this requires the insertion of a
dummy instruction while the next instruction is fetched, it is a two cycle instruction.
If the result is not 0 the program proceeds with the following instruction.
ACC ← [m]
Skip if [m] = 0
None

SUBM A,[m]
Description

Operation
Affected flag(s)

SUB A,x
Description

Operation
Affected flag(s)

SWAP [m]
Description

Operation
Affected flag(s)

SWAPA [m]
Description

Operation
Affected flag(s)

SZ [m]
Description

Operation
Affected flag(s)

SZA [m]
Description

Operation

Affected flag(s)

Rev. 1.00	 80 October 27, 2011 Rev. 1.00	 81 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Skip if bit i of Data Memory is 0
If bit i of the specified Data Memory is 0, the following instruction is skipped. As
this requires the insertion of a dummy instruction while the next instruction is
fetched, it is a two cycle instruction. If the result is not 0, the program proceeds
with the following instruction.
Skip if [m].i = 0
None

Read table (current page) to TBLH and Data Memory
The low byte of the program code (current page) addressed by the table pointer
(TBLP) is moved to the specified Data Memory and the high byte moved to TBLH.
[m] ← program code (low byte)
TBLH ← program code (high byte)
None

Move the ROM code (locate by TBLP and TBHP) to TBLH and data memory (ROM
code TBHP is enabled)
The low byte of ROM code addressed by the table pointers (TBLP and TBHP)
is moved to the specified data memory and the high byte transferred to TBLH
directly.
[m] ← program code (low byte)
TBLH ← program code (high byte)
None

Read table (last page) to TBLH and Data Memory
The low byte of the program code (last page) addressed by the table pointer (TBLP)
is moved to the specified Data Memory and the high byte moved to TBLH.
[m] ← program code (low byte)
TBLH ← program code (high byte)
None

Logical XOR Data Memory to ACC
Data in the Accumulator and the specified Data Memory perform a bitwise logical
XOR operation. The result is stored in the Accumulator.
ACC ← ACC "�XOR"� [m]
Z

Logical XOR ACC to Data Memory
Data in the specified Data Memory and the Accumulator perform a bitwise logical
XOR operation. The result is stored in the Data Memory.
[m] ← ACC "�XOR"� [m]
Z

Logical XOR immediate data to ACC
Data in the Accumulator and the specified immediate data perform a bitwise
logical XOR operation. The result is stored in the Accumulator.
ACC ← ACC "�XOR"� x
Z

SZ [m].i
Description

Operation
Affected flag(s)

TABRDC [m]
Description

Operation

Affected flag(s)

TABRDC [m]

Description

Operation

Affected flag(s)

TABRDL [m]
Description

Operation

Affected flag(s)

XOR A,[m]
Description

Operation
Affected flag(s)

XORM A,[m]
Description

Operation
Affected flag(s)

XOR A,x
Description

Operation
Affected flag(s)

Rev. 1.00	 80 October 27, 2011 Rev. 1.00	 81 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Package Information
Note that the package information provided here is for consultation purposes only. As this
information may be updated at regular intervals users are reminded to consult the Holtek website
(http://www.holtek.com.tw/english/literature/package.pdf) for the latest version of the package
information.

16-pin NSOP (150mil) Outline Dimensions

� �

�

�

�

�

� �

�

�

� �

�
�

� �

MS-012

Symbol
Dimensions in inch

Min. Nom. Max.
A 0.228 ― 0.244
B 0.150 ― 0.157
C 0.012 ― 0.020
C׳ 0.386 ― 0.402
D ― ― 0.069
E ― 0.050 ―
F 0.004 ― 0.010
G 0.016 ― 0.050
H 0.007 ― 0.010
α 0° ― 8°

Symbol
Dimensions in mm

Min. Nom. Max.
A 5.79 ― 6.20
B 3.81 ― 3.99
C 0.30 ― 0.51
C׳ 9.80 ― 10.21
D ― ― 1.75
E ― 1.27 ―
F 0.10 ― 0.25
G 0.41 ― 1.27
H 0.18 ― 0.25
α 0° ― 8°

http://www.holtek.com.tw/english/literature/package.pdf

Rev. 1.00	 82 October 27, 2011 Rev. 1.00	 83 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

20-pin SSOP (150mil) Outline Dimensions

� �

�

� �

� �

� �

�

�

� �

� � �
�

�

Symbol
Dimensions in inch

Min. Nom. Max.
A 0.228 ― 0.244
B 0.150 ― 0.158
C 0.008 ― 0.012
C׳ 0.335 ― 0.347
D 0.049 ― 0.065
E ― 0.025 ―
F 0.004 ― 0.010
G 0.015 ― 0.050
H 0.007 ― 0.010
α 0° ― 8°

Symbol
Dimensions in mm

Min. Nom. Max.
A 5.79 ― 6.20
B 3.81 ― 4.01
C 0.20 ― 0.30
C׳ 8.51 ― 8.81
D 1.24 ― 1.65
E ― 0.64 ―
F 0.10 ― 0.25
G 0.38 ― 1.27
H 0.18 ― 0.25
α 0° ― 8°

Rev. 1.00	 82 October 27, 2011 Rev. 1.00	 83 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

SAW Type 20-pin (4mm×4mm) QFN Outline Dimensions

�
�

�

� �
� �

�

� �

� �

�

�

�

�� �

� � � �

�

� �

� �

�

GTK

Symbol
Dimensions in inch

Min. Nom. Max.
A 0.031 ― 0.035

A1 0.000 0.001 0.002
A3 ― 0.008 ―
b 0.007 0.010 0.012
D ― 0.157 ―
E ― 0.157 ―
e ― 0.020 ―

D2 0.075 ― 0.081
E2 0.075 ― 0.081
L 0.012 0.016 0.020
K 0.008 ― ―

Symbol
Dimensions in mm

Min. Nom. Max.
A 0.80 ― 0.90

A1 0.00 0.02 0.05
A3 ― 0.203 ―
b 0.18 0.25 0.30
D ― 4.00 ―
E ― 4.00 ―
e ― 0.50 ―

D2 1.90 2.00 2.05
E2 1.90 2.00 2.05
L 0.30 0.40 0.50
K 0.20 ― ―

Rev. 1.00	 84 October 27, 2011 Rev. 1.00	 85 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Reel Dimensions

� ��

� �

� � �

16-pin NSOP(150mil)

Symbol Description Dimensions in mm
A Reel Outer Diameter 330.0±1.0
B Reel Inner Diameter 100.0±1.5
C Spindle Hole Diameter 13.0+0.5/-0.2

D Key Slit Width 2.0±0.5
T1 Space Between Flang 16.8+0.3/-0.2

T2 Reel Thickness 22.2±0.2

SSOP 20S (150mil)

Symbol Description Dimensions in mm
A Reel Outer Diameter 330.0±1.0
B Reel Inner Diameter 100.0±1.5
C Spindle Hole Diameter 13.0+0.5/-0.2

D Key Slit Width 2.0±0.5
T1 Space Between Flang 16.8+0.3/-0.2

T2 Reel Thickness 22.2±0.2

Rev. 1.00	 84 October 27, 2011 Rev. 1.00	 85 October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Carrier Tape Dimensions

�� �

�

� �� ��

�

�

�

� �

� �

� �

�

� � � � � � � �
 � � � �
 � � � �
 	 � � � � � � � � � � � � � � �
� � � � � � � � � � 	 � �
 � � � � � � � � � � � � 	 � �

� � � � � � � � �

16-pin NSOP (150mil)

Symbol Description Dimensions in mm
W Carrier Tape Width 16.0±0.3
P Cavity Pitch 8.0±0.1
E Perforation Position 1.75±0.1
F Cavity to Perforation(Width Direction) 7.5±0.1
D Perforation Diameter 1.55+0.10/-0.00

D1 Cavity Hole Diameter 1.50+0.25/-0.00

P0 Perforation Pitch 4.0±0.1
P1 Cavity to Perforation(Length Direction) 2.0±0.1
A0 Cavity Length 6.5±0.1
B0 Cavity Width 10.3±0.1
K0 Cavity Depth 2.1±0.1
t Carrier Tape Thickness 0.30±0.05
C Cover Tape Width 13.3±0.1

SSOP 20S (150mil)

Symbol Description Dimensions in mm
W Carrier Tape Width 16.0+0.3/-0.1

P Cavity Pitch 8.0±0.1
E Perforation Position 1.75±0.10
F Cavity to Perforation(Width Direction) 7.5±0.1
D Perforation Diameter 1.5+0.1/-0.0

D1 Cavity Hole Diameter 1.50+0.25/-0.00

P0 Perforation Pitch 4.0±0.1
P1 Cavity to Perforation(Length Direction) 2.0±0.1
A0 Cavity Length 6.5±0.1
B0 Cavity Width 9.0±0.1
K0 Cavity Depth 2.3±0.1
t Carrier Tape Thickness 0.30±0.05
C Cover Tape Width 13.3±0.1

Rev. 1.00	 86 October 27, 2011 Rev. 1.00	 PB October 27, 2011

HT82B42R/HT82B42RE
I/O MCU with USB Interface

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722

Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538, USA
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com

Copyright© 2011 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However,
Holtek assumes no responsibility arising from the use of the specifications described. The applications
mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or
representation that such applications will be suitable without further modification, nor recommends the use
of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's
products are not authorized for use as critical components in life support devices or systems. Holtek reserves
the right to alter its products without prior notification. For the most up-to-date information, please visit our
web site at http://www.holtek.com.tw.

	Features
	General Description
	Selection Table
	Block Diagram
	HT82B42R
	HT82B42RE

	Pin Assignment
	Pin Description
	Absolute Maximum Ratings
	D.C. Characteristics
	EEPROM Memory D.C. Characteristics
	A.C. Characteristics
	System Architecture
	Clocking and Pipelining
	Program Counter
	Stack
	Arithmetic and Logic Unit – ALU

	Program Memory
	Structure
	Special Vectors
	Look-up Table
	Table Program Example

	Data Memory
	Structure

	General Purpose Data Memory
	Special Function Registers
	Indirect Addressing Register – IAR0, IAR
	Memory Pointer – MP0, MP1
	Accumulator – ACC
	Program Counter Low Register – PCL
	Look-up Table Registers – TBLP, TBLH, TB
	Status Register – STATUS
	Bank Pointer – BP

	Input/Output Ports
	Pull-high Resistors
	Port A CMOS/NMOS/PMOS Structure
	Port A VDD/V33O Option Structure
	Port Pin Wake-up
	I/O Port Control Registers
	Pin-shared Functions
	Programming Considerations

	Timer/Event Counters
	Configuring the Timer/Event Counter Inpu
	Timer Register – TMR0, TMR1L/TMR1H
	Timer Control Register – TMR0C/TMR1C
	Configuring the Timer Mode
	Configuring the Event Counter Mode
	Configuring the Pulse Width Measurement
	I/O Interfacing
	Programming Considerations
	Timer Program Example

	Interrupts
	Interrupt Registers
	Interrupt Operation
	Interrupt Priority
	Timer/Event Counter Interrupt
	Programming Considerations
	USB Interrupt
	Serial Interface Interrupt

	Reset and Initialisation
	Reset Functions
	Reset Initial Conditions

	Oscillator
	Watchdog Timer Oscillator

	Power Down Mode and Wake-up
	Power Down Mode
	Entering the Power Down Mode
	Standby Current Considerations
	Wake-up

	Watchdog Timer
	USB Interface
	Suspend Wake-Up and Remote Wake-Up
	To Configure as PS2 Device
	USB Control Registers
	STALL and PIPE, PIPE_CTRL, Endpt_EN Regi

	Serial Interface – SPI
	SPI Interface Operation
	SPI Registers
	SPI Communication
	SPI Bus Enable/Disable
	SPI Operation
	Error Detection

	Configuration Options
	Application Circuit
	Instruction Set
	Introduction
	Instruction Timing
	Moving and Transferring Data
	Arithmetic Operations
	Logical and Rotate Operations
	Branches and Control Transfer
	Bit Operations
	Table Read Operations
	Other Operations

	Instruction Set Summary
	Package Information
	16-pin NSOP (150mil) Outline Dimensions
	20-pin SSOP (150mil) Outline Dimensions
	SAW Type 20-pin (4mm×4mm) QFN Outline Di
	Reel Dimensions
	Carrier Tape Dimensions

