

4583 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REJ03B0009-0300Z Rev.3.00 2004.08.06

DESCRIPTION

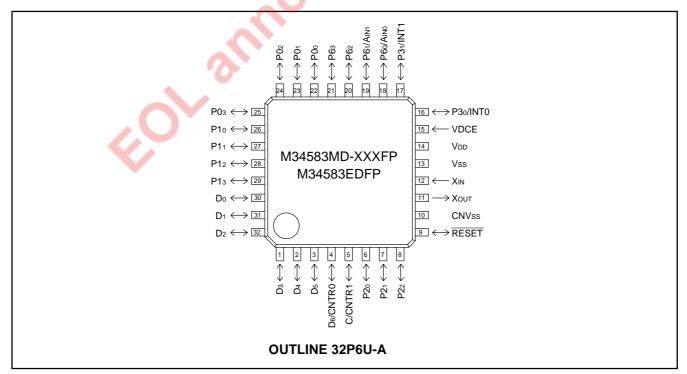
The 4583 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with four 8-bit timers (each timer has one or two reload registers), a 10-bit A/D converter, interrupts, and oscillation circuit switch function. The various microcomputers in the 4583 Group include variations of the built-in memory type as shown in the table below.

FEATURES

- Timers

Timer 1	8-bit timer with a reload register
Timer 2	8-bit timer with a reload register
Timer 3	8-bit timer with a reload register
Timer 3 8-b	oit timer with two reload registers

- A/D converter 10-bit successive comparison method, 2ch
- Watchdog timer
- Clock generating circuit (ceramic resonator/RC oscillation/quartz-crystal oscillation/onchip oscillator)
- ●LED drive directly enabled (port D)


APPLICATION

Remote control transmitter

Part number	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34583MD-XXXFP	16384 words	384 words	32P6U-A	Mask ROM
M34583EDFP (Note)	16384 words	384 words	32P6U-A	One Time PROM

Note: Shipped in blank.

PIN CONFIGURATION

Pin configuration (top view) (4583 Group)

PERFORMANCE OVERVIEW

	Paramete	r	Function			
Number of basic instructions		ons	149			
Minimum instruction execution time		cution time	0.5 μs (at 6.0 MHz oscillation frequency, in XIN through-mode)			
Memory sizes ROM			16384 words X 10 bits			
	RAM		384 words X 4 bits			
Input/Output ports	ovamined by		Seven independent I/O ports; Port D6 is also used as CNTR0, respectively. The output structure is switched by software.			
	P00-P03	I/O	4-bit I/O port; a pull-up function, a key-on wakeup function and output structure can be switched by software.			
	P10-P13	I/O	4-bit I/O port; a pull-up function, a key-on wakeup function and output structure can be switched by software.			
	P20-P22	I/O	3-bit I/O port			
	P30, P31	I/O	2-bit I/O port; ports P30 and P31 are also used as INT0 and INT1, respectively.			
	P60-P63	I/O	4-bit I/O port; ports P60, P61 are also used as AIN0, AIN1, respectively.			
Timers	Timer 1		8-bit timer with a reload register is also used as an event counter.			
			Also, this is equipped with a period/pulse width measurement function.			
	Timer 2		8-bit timer with a reload register.			
	Timer 3		8-bit timer with a reload register is also used as an event counter.			
	Timer 4		8-bit timer with two reload registers and PWM output function.			
A/D converter			10-bit wide X 2 ch, This is equipped with an 8-bit comparator function.			
Interrupt	Sources		7 (two for external, four for timer, one for A/D)			
	Nesting		1 level			
Subroutine nes	sting		8 levels			
Device structur	re		CMOS silicon gate			
Package			32-pin plastic molded LQFP (32P6U-A)			
Operating tem	perature ra	ange	−20 °C to 85 °C			
Supply voltage	Mask RO	M version	1.8 V to 5.5 V (It depends on operation source clock, oscillation frequency and operating mode.)			
	One Time	PROM version	2.5 V to 5.5 V (It depends on operation source clock, oscillation frequency and operating mode.)			
Power	Active mo	ode	2.8 mA (Ta=25°C, VDD=5V, f(XIN)=6 MHz, f(STCK)=f(XIN), on-chip oscillator stop)			
dissipation			70 μA (Ta=25°C, VDD=5V, f(XIN)=32 kHz, f(STCK)=f(XIN), on-chip oscillator stop)			
(typical value)			150 μA (Ta=25°C, VDD=5V, on-chip oscillator is used, f(STCK)=f(RING), f(XIN) stop)			
	RAM bac	k-up mode 🧳	0.1 μ A (Ta=25°C, VDD = 5 V, output transistors in the cut-off state)			

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

PIN DESCRIPTION

Pin	Name	Input/Output	Function
VDD	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
CNVss	CNVss	_	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.
VDCE	Voltage drop detection circuit enable	Input	This pin is used to operate/stop the voltage drop detection circuit. When "H" level is input to this pin, the circuit starts operating. When "L" level is input to this pin, the circuit stops operating.
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, the built-in power-on reset or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.
XIN	Main clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator, connect it between pins XIN and XOUT. When using a 32 kHz quartz-crystal oscillator, connect it
Хоит	Main clock output	Output	between pins XIN and XOUT. A feedback resistor is built-in between them. When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.
D0-D6	I/O port D Input is examined by skip decision.	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port D6 is also used as CNTR0 pin.
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P20-P23	I/O port P2	I/O	Port P2 serves as a 3-bit I/O port. The output structure is N-channel open-drain. For input use, set the latch of the specified bit to "1".
P30, P31	I/O port P3	I/O	Port P3 serves as a 2-bit I/O port. The output structure is N-channel open-drain. For input use, set the latch of the specified bit to "1". Ports P30 and P31 are also used as INT0 pin and INT1 pin, respectively.
P60-P63	I/O port P6	I/O	Port P6 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain. For input use, set the latch of the specified bit to "1". Ports P60, P61 are also used as AINO, AIN1, respectively.
С	Output port C	Output	Port C serves as a 1-bit port. The output structure is CMOS. For input use, set the latch of the specified bit to "1". Port C is also used as CNTR1.
CNTR0, CNTR1	Timer input/output	I/O	CNTR0 pin has the function to input the clock for the timer 1 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2. CNTR1 pin has the function to input the clock for the timer 3 event counter, and to output the PWM signal generated by timer 4.CNTR0 pin and CNTR1 pin are also used as Ports D6 and C, respectively.
INT0, INT1	Interrupt input	Input	INT0 pin and INT1 pin accept external interrupts. They have the key-on wakeup function which can be switched by software. INT0 pin and INT1 pin are also used as Ports P30 and P31, respectively.
AIN0, AIN1	Analog input	Input	A/D converter analog input pins. AIN0 pin and AIN1 pin are also used as Ports P60 and P61, respectively.

Notice: This is not a final specification. Some parametric limits are subject to change.

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
D6	CNTR0	CNTR0	D6	P60	AIN0	AIN0	P60
С	CNTR1	CNTR1	С	P61	AIN1	AIN1	P61
P30	INT0	INT0	P30				
P31	INT1	INT1	P31				

Notes 1: Pins except above have just single function.

- 2: The input/output of P30 and P31 can be used even when INT0 and INT1 are selected.
- 3: The input/output of D6 can be used even when CNTR0 (input) is selected.
- 4: The input of D6 can be used even when CNTR0 (output) is selected.
- 5: The "H" output of C can be used even when CNTR1 (output) is selected.

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator
- Clock (f(XIN)) by the external quartz-crystal oscillation

System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

● Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table Selection of system clock

Tubic C	able delection of system clock							
	Registe	jister MR		System clock	Operation mode			
MR ₃	MR2	MR1	MR ₀					
0	0	0	0	f(STCK) = f(XIN)	XIN through mode			
		×	1	f(STCK) = f(RING)	Ring through mode			
0	1	0	0	f(STCK) = f(XIN)/2	XIN divided by 2 mode			
		×	1	f(STCK) = f(RING)/2	Ring divided by 2 mode			
1	0	0	0	f(STCK) = f(XIN)/4	XIN divided by 4 mode			
		×	1	f(STCK) = f(RING)/4	Ring divided by 4 mode			
1	1	0	0	f(STCK) = f(XIN)/8	XIN divided by 8 mode			
		X	1	f(STCK) = f(RING)/8	Ring divided by 8 mode			

X: 0 or 1

Note: The f(RING)/8 is selected after system is released from reset. When on-chip oscillator clock is selected for main clock, set the on-chip oscillator to be operating state.

PRELIMINARY

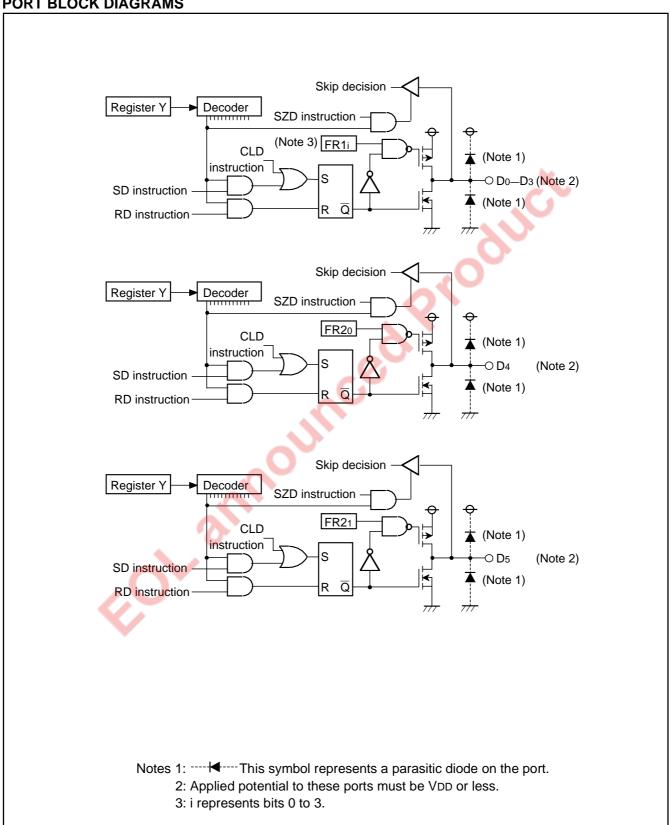
Port	Pin	Input	Output structure	I/O	Control	Control	Remark
D 1 D	D- D-	Output	N abanalana da'a/	unit	instructions	registers	Output atmost an actual at
Port D	D0-D5	1/0	N-channel open-drain/	1	SD, RD	FR1, FR2	Output structure selection
	D6/CNTR0	(7)	CMOS		SZD CLD	W6	function (programmable)
Port P0	P00-P03	I/O	N-channel open-drain/	4	OP0A	FR0	Built-in programmable pull-up
		(4)	CMOS		IAP0	PU0	functions, key-on wakeup
						K0, K1	functions and output structure selection functions
Port P1	P10-P13	I/O	N-channel open-drain/	4	OP1A	FR0	Built-in programmable pull-up
		(4)	CMOS		IAP1	PU1	functions, key-on wakeup
						K0	functions and output structure
							selection functions
Port P2	P20, P21, P22	I/O	N-channel open-drain	3	OP2A	4	
		(3)			IAP2		
Port P3	P30/INT0, P31/INT1	I/O	N-channel open-drain	2	OP3A	l1, l2	
		(2)			IAP3	K2	
Port P6	P60/AIN0, P61/AIN1,	I/O	N-channel open-drain	4	OP6A	Q2	
	P62, P63	(4)			IAP6	Q1	
Port C	C/CNTR1	Output	CMOS	1	SCP	W4	
1		(1)			RCP		
				Q _x			
			Oll	•			
		2	CMOS	•			

PRELIMINARY Notice: This is not a final specification.

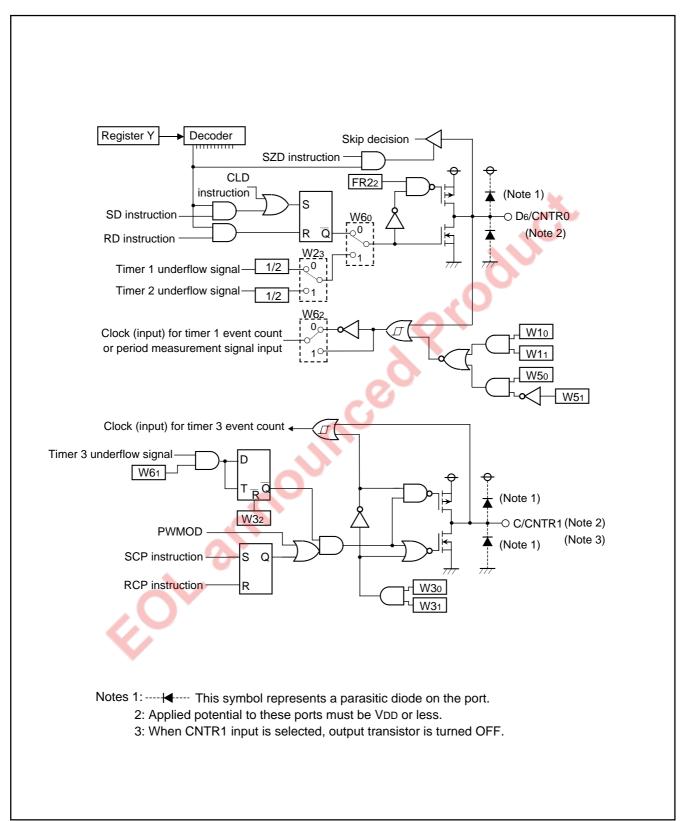
CONNECTIONS OF UNUSED PINS

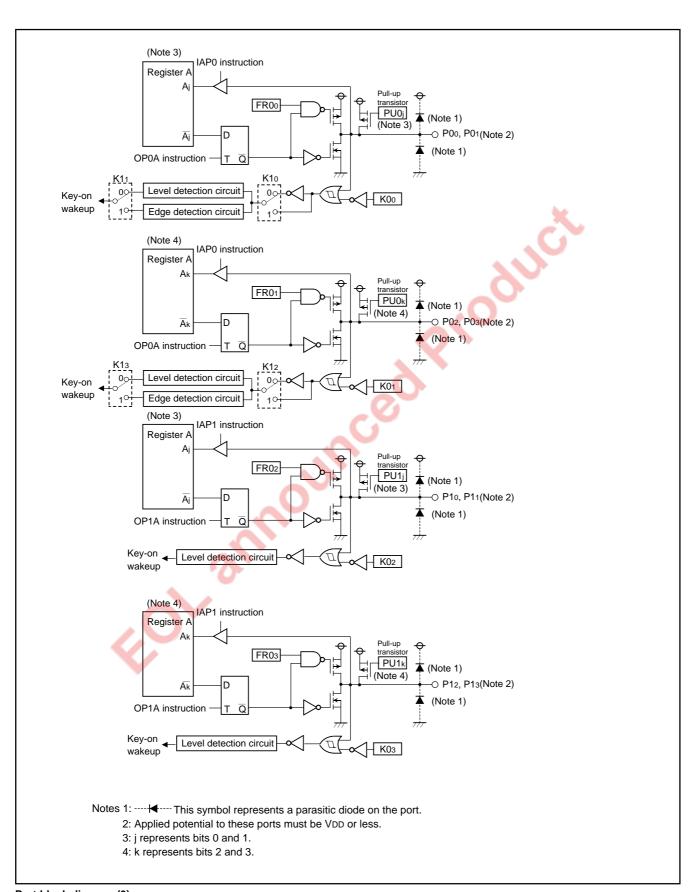
Pin	Connection	Usage condition					
XIN	Open.	Internal oscillator is selected.	(Note 1)				
Xout	Open.	Internal oscillator is selected.	(Note 1)				
		RC oscillator is selected.	(Note 2)				
		External clock input is selected for main clock.	(Note 3)				
D0-D5	Open.						
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 4)				
D6/CNTR0	Open.	CNTR0 input is not selected for timer 1 count source.					
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 4)				
C/CNTR1	Open.	CNTR1 input is not selected for timer 3 count source.					
P00-P03	Open.	The key-on wakeup function is not selected.	(Note 6)				
	Connect to Vss.	N-channel open-drain is selected for the output structure. (No					
		The pull-up function is not selected.	(Note 4)				
		The key-on wakeup function is not selected.	(Note 6)				
P10-P13	Open.	The key-on wakeup function is not selected.	(Note 7)				
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 5)				
		The pull-up function is not selected.	(Note 4)				
		The key-on wakeup function is not selected.	(Note 7)				
P20	Open.						
	Connect to Vss.						
P21	Open.						
	Connect to Vss.						
P22	Open.						
	Connect to Vss.						
P3o/INT0	Open.	"0" is set to output latch.					
	Connect to Vss.						
P31/INT1	Open.	"0" is set to output latch.					
	Connect to Vss.						
P32, P33	Open.						
	Connect to Vss.						
P60/AIN0, P61/AIN1	Open.						
P62, P63	Connect to Vss.	<u> </u>					

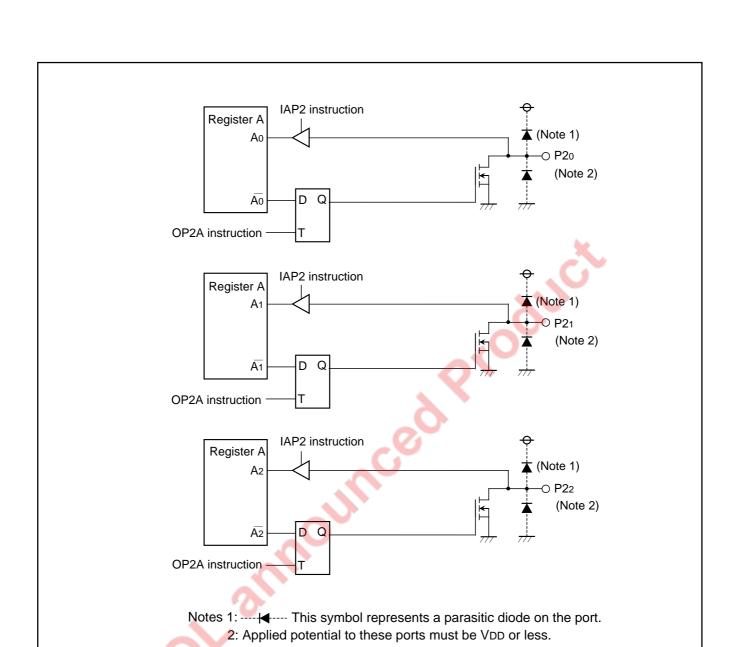
Notes 1: After system is released from reset, the internal oscillation (on-chip oscillator) is selected for system clock (RG0=0, MR0=1).

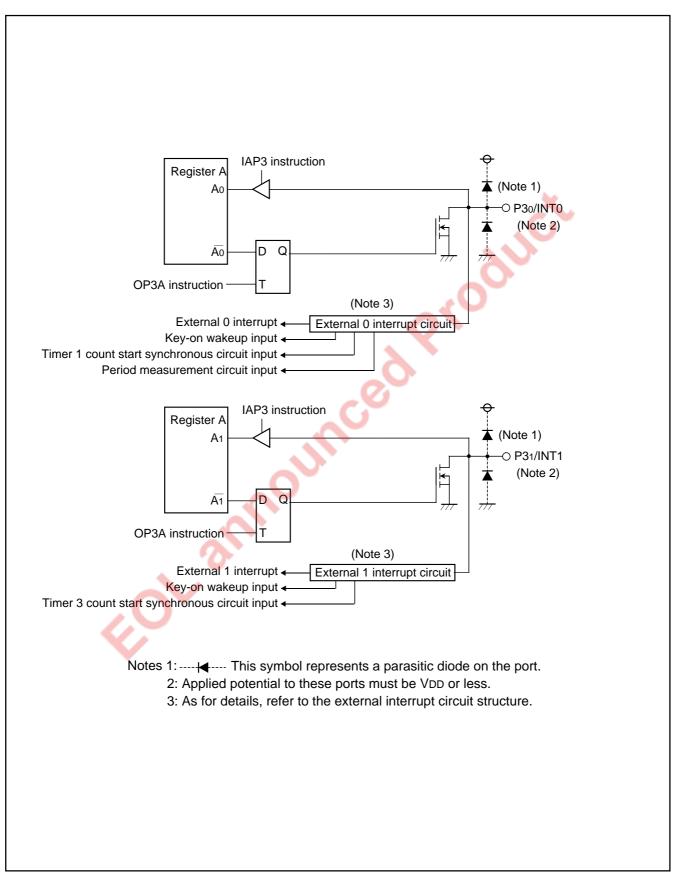

- 2: When the CRCK instruction is executed, the RC oscillation circuit becomes valid. Be careful that the swich of system clock is not executed at oscillation start only by the CRCK instruction execution.
 - In order to start oscillation, setting the main clock f(XIN) oscillation to be valid (MR1=0) is required. (If necessary, generate the oscillation stabilizing wait time by software.)
 - Also, when the main clock (f(XIN)) is selected as system clock, set the main clock f(XIN) oscillation (MR1=0) to be valid, and select main clock f(XIN) (MR0=0). Be careful that the switch of system clock cannot be executed at the same time when main clock oscillation is started.
- 3: In order to use the external clock input for the main clock f(XIN), select the ceramic resonance by executing the CMCK instruction at the beggining of software, and then set the main clock (f(XIN)) oscillation to be valid (MR1=0). Until the main clock (f(XIN)) oscillation becomes valid (MR1=0) after ceramic resonance becomes valid, XIN pin is fixed to "H". When an external clock is used, insert a 1 kΩ resistor to XIN pin in series for limits of current.
- 4: Be sure to select the output structure of ports Do-D5 and the pull-up function of P0o-P03 and P1o-P13 with every one port. Set the corresponding bits of registers for each port.
- 5: Be sure to select the output structure of ports P00-P03 and P10-P13 with every two ports. If only one of the two pins is used, leave another one open.
- 6: The key-on wakeup function is selected with every two bits. When only one of key-on wakeup function is used, considering that the value of key-on wake-up control register K1, set the unused 1-bit to "H" input (turn pull-up transistor ON and open) or "L" input (connect to Vss, or open and set the
- 7: The key-on wakeup function is selected with every two bits. When one of key-on wakeup function is used, turn pull-up transistor of unused one ON and open.

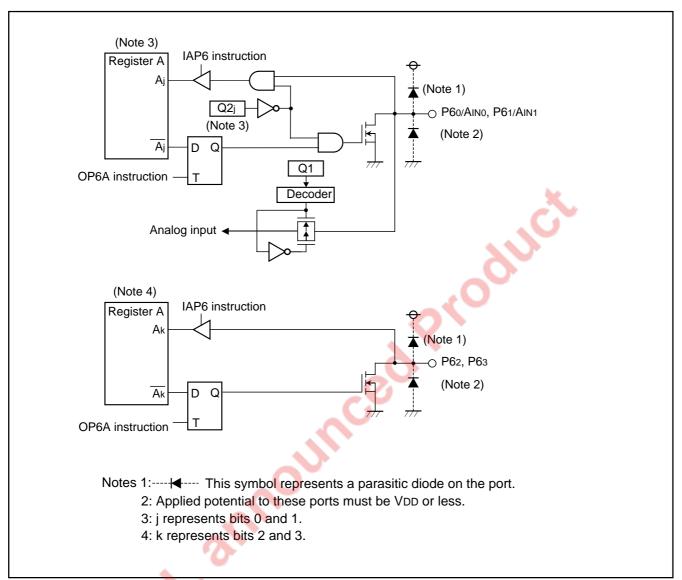
(Note when connecting to Vss and VDD)


• Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise.

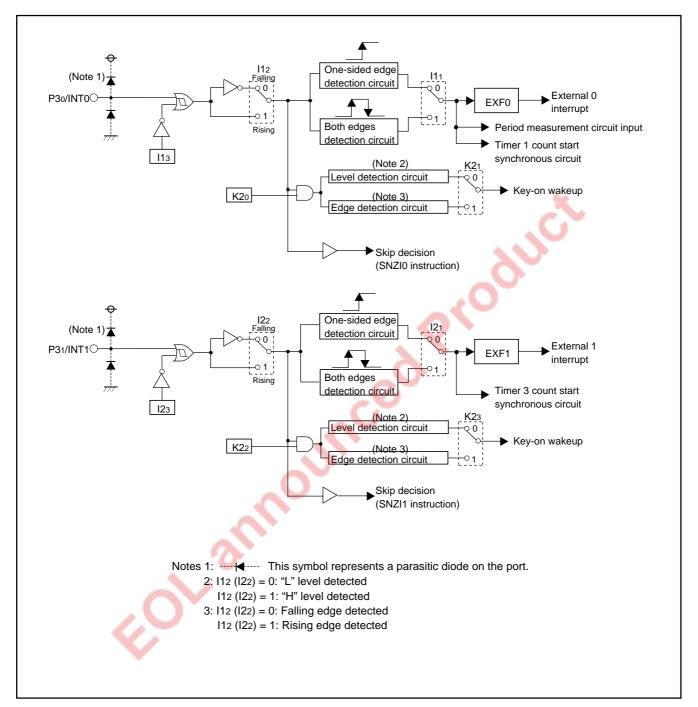

PORT BLOCK DIAGRAMS


Port block diagram (1)


Port block diagram (2)



Port block diagram (3)



Port block diagram (4)

Port block diagram (6)

Port block diagram (7)

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both An instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed. Also, when the TABP p instruction is executed, the high-order 2 bits of the reference data in ROM is stored to the low-order 2 bits of register D, and the contents of the high-order 1 bit of register D is "0". (Figure 4).

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

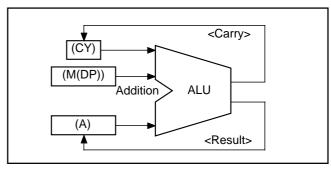


Fig. 1 AMC instruction execution example

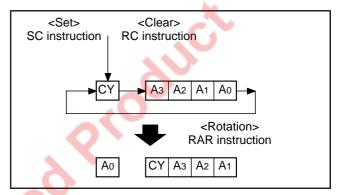


Fig. 2 RAR instruction execution example

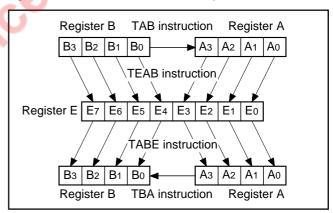


Fig. 3 Registers A, B and register E

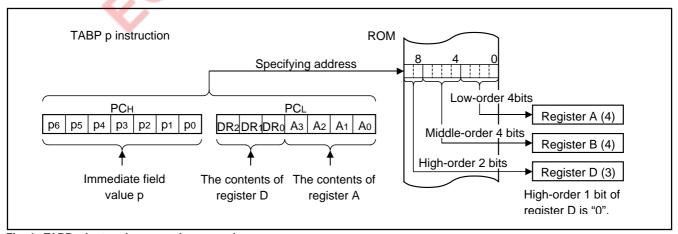


Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

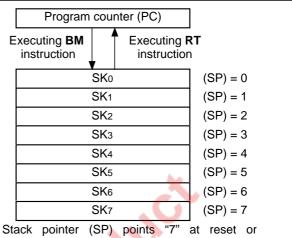
Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- · performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.


Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first **BM** instruction, and the contents of program counter is stored in SKo. When the **BM** instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

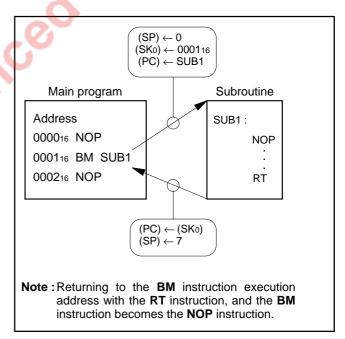


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

• Note

Register Z of data pointer is undefined after system is released from reset

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

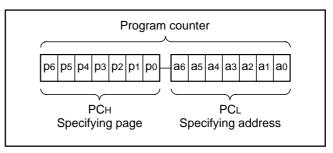


Fig. 7 Program counter (PC) structure

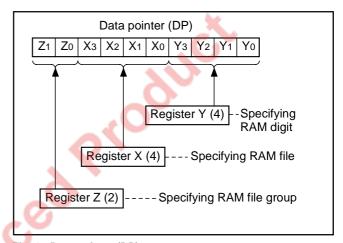


Fig. 8 Data pointer (DP) structure

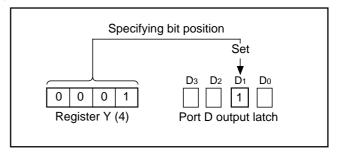


Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34583MD/ED.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages
M34583MD	16384 words	128 (0 to 127)
M34583ED	16384 words	128 (0 to 127)

Note: Data in pages 64 to 127 can be referred with the TABP p instruction after the SBK instruction is executed.

Data in pages 0 to 63 can be referred with the TABP p instruction after the RBK instruction is executed.

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 9 to 0) of all addresses can be used as data areas with the TABP p instruction.

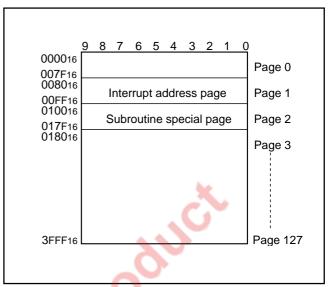


Fig. 10 ROM map of M34583MD/ED

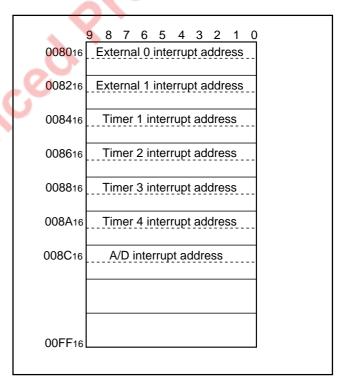


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

Table 2 RAM size

Part number	RAM size
M34583MD/ED	384 words X 4 bits (1536 bits)

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up). Table 2 shows the RAM size. Figure 12 shows the RAM map.

• Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

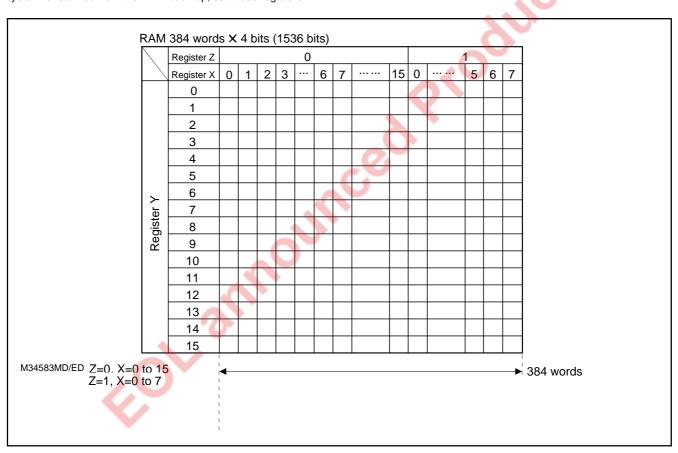


Fig. 12 RAM map

Notice: This is not a final specification. Some parametric limits are subject to change

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Table 3 In	terrupt sources		
Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT0 pin	Address 0 in page 1
2	External 1 interrupt	Level change of INT1 pin	Address 2 in page 1
3	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
4	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
5	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1
6	Timer 4 interrupt	Timer 4 underflow	Address A in page 1
7	A/D interrupt	Completion of A/D conversion	Address C in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Struction	*		
Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
External 1 interrupt	EXF1	SNZ1	V11
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20
Timer 4 interrupt	T4F	SNZT4	V21
A/D interrupt	ADF	SNZAD	V22

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction		
1	Enabled	Invalid		
0	Disabled	Valid		

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
 An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
 INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B
 The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

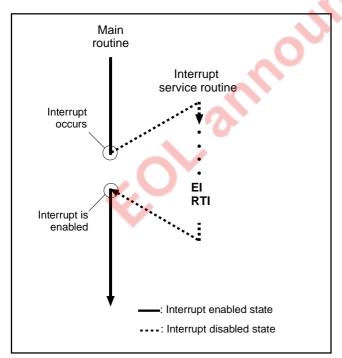


Fig. 13 Program example of interrupt processing

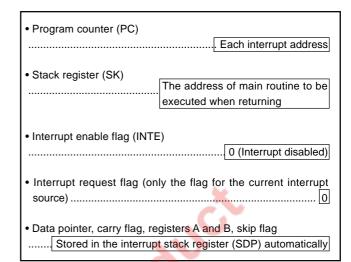


Fig. 14 Internal state when interrupt occurs

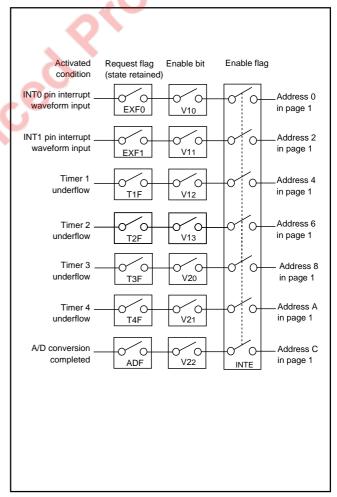


Fig. 15 Interrupt system diagram

(6) Interrupt control registers

- Interrupt control register V1
 Interrupt enable bits of external 0, external 1, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.
- Interrupt control register V2
 The timer 3, timer 4 and A/D interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 6 Interrupt control registers

Interrupt control register V1		at reset : 00002		at RAM back-up : 00002	R/W TAV1/TV1A
V13	V/4 Timer 2 interrupt enable hit		Interrupt disabled ((SNZT2 instruction is valid)	
V 13	Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid)	
V12	Timer 1 interrupt enable bit	0	Interrupt disabled ((SNZT1 instruction is valid)	
V 12	Timer i interrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid)	
V11	External 1 interrupt enable bit	0	Interrupt disabled ((SNZ1 instruction is valid)	
VII	External Timerrupt enable bit	1	Interrupt enabled (SNZ1 instruction is invalid)	
V10	External 0 interrupt enable bit	0	Interrupt disabled ((SNZ0 instruction is valid)	
V 10	External o interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)	

	Interrupt control register V2	at reset : 00002		at RAM back-up : 00002	R/W TAV2/TV2A
V23	Not used	0	This bit has no fun	ction, but read/write is enabled.	
\/Os	V22 A/D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)		
V Z2		1	Interrupt enabled (SNZAD instruction is invalid)	
\/O.	Timer 4 interrupt enable bit	0	Interrupt disabled ((SNZT4 instruction is valid)	
V21	Timer 4 interrupt enable bit	1	Interrupt enabled (SNZT4 instruction is invalid)	
\/Os	Timer 3 interrupt enable bit	0	Interrupt disabled ((SNZT3 instruction is valid)	
V20	Timer 3 interrupt enable bit	1	Interrupt enabled (SNZT3 instruction is invalid)	

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10–V13, V20–V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

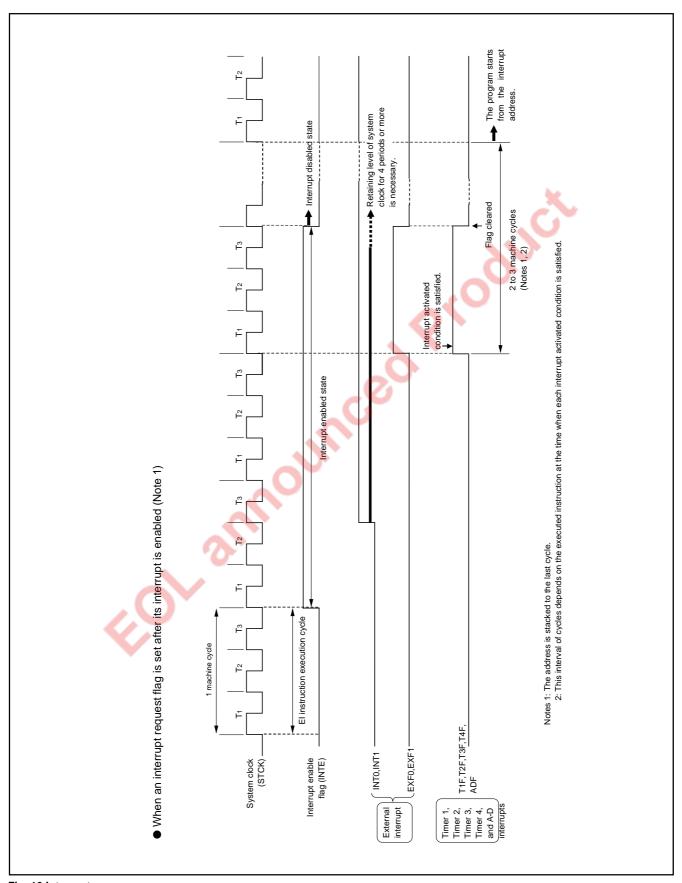


Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4583 Group has the external 0 interrupt and external 1 interrupt.

An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control registers I1 and I2.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	P30/INT0	When the next waveform is input to P30/INT0 pin	I 11
		Falling waveform ("H"→"L")	l12
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	
External 1 interrupt	P31/INT1	When the next waveform is input to P31/INT1 pin	I21
		Falling waveform ("H"→"L")	122
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	

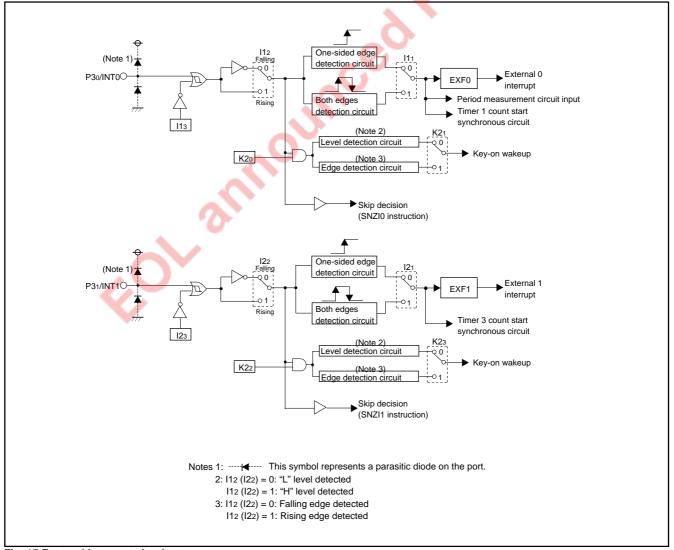


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to P30/INT0 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition
 - External 0 interrupt activated condition is satisfied when a valid waveform is input to P3o/INT0 pin.
 - The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.
- ① Set the bit 3 of register I1 to "1" for the INT0 pin to be in the input enabled state.
- 2 Select the valid waveform with the bits 1 and 2 of register I1.
- ③ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ0 instruction.
- Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the P30/INT0 pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External 1 interrupt request flag (EXF1)

External 1 interrupt request flag (EXF1) is set to "1" when a valid waveform is input to P31/INT1 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 1 interrupt activated condition
- External 1 interrupt activated condition is satisfied when a valid waveform is input to P31/INT1 pin.
- The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows.
- ① Set the bit 3 of register I2 to "1" for the INT1 pin to be in the input enabled state.
- 2 Select the valid waveform with the bits 1 and 2 of register I2.
- 3 Clear the EXF1 flag to "0" with the SNZ1 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ1 instruction.
- Set both the external 1 interrupt enable bit (V11) and the INTE flag to "1."

The external 1 interrupt is now enabled. Now when a valid waveform is input to the P31/INT1 pin, the EXF1 flag is set to "1" and the external 1 interrupt occurs.

(3) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

• Interrupt control register I2

Register I2 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 8 External interrupt control register

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W TAI1/TI1A
l13	INTO pin input control bit	0	INT0 pin input disa	abled	
113	IN 10 pin input control bit	1	INT0 pin input ena	bled	
l12	Interrupt valid waveform for INT0 pin/	0	Falling waveform/"L" level ("L" level is recognized with the SNZI0 instruction)		
112	return level selection bit	1	Rising waveform/"H" level ("H" level is recognized with the SNZI0 instruction)		
l1 ₁	INT0 pin edge detection circuit control bit	0	One-sided edge de	etected	
111	in 10 pin edge detection circuit control bit	1	Both edges detected		
I10	INT0 pin Timer 1 count start synchronous	0	Timer 1 count start	t synchronous circuit not selected	
110	circuit selection bit	1	Timer 1 count start	t synchronous circuit selected	

	Interrupt control register I2		reset : 00002	at RAM back-up : state retained	R/W TAI2/TI2A
123	INT1 pin input control bit (Note 2)	0	INT1 pin input disa	bled	
123	123 INT 1 pin input control bit (Note 2)		INT1 pin input ena	bled	
122	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 2)	0	instruction)	L" level ("L" level is recognized with H" level ("H" level is recognized with	
I21	INT1 pin edge detection circuit control bit	0	One-sided edge de		
	, ,	1	Both edges detected	ed	
120	INT1 pin Timer 3 count start synchronous	0	Timer 3 count start	synchronous circuit not selected	
120	circuit selection bit	1	Timer 3 count start	synchronous circuit selected	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set.

(4) Notes on External 0 interrupt

① Note [1] on bit 3 of register I1

When the input of the INTO pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the P30/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18 ①) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 18 ②).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18 ③).

```
LA
            ; (XXX02)
TV1A
            ; The SNZ0 instruction is valid ..... ①
LA
            ; (1XXX2)
TI1A
            ; Control of INT0 pin input is changed
NOP
            SNZ0
            ; The SNZ0 instruction is executed
            (EXF0 flag cleared)
NOP
   :
  X: these bits are not used here.
```

Fig. 18 External 0 interrupt program example-1

- 2 Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful about the following notes.
- When the input of INT0 pin is disabled (register I13 = "0"), set the key-on wakeup function to be invalid (register K20 = "0") before system enters to the RAM back-up mode. (refer to Figure 19①).

```
LA 0 ; (XXX02)
TK2A ; Input of INT0 key-on wakeup invalid .. ①
DI
EPOF
POF ; RAM back-up

X: these bits are not used here.
```

Fig. 19 External 0 interrupt program example-2

3 Note on bit 2 of register I1

When the interrupt valid waveform of the P30/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

• Depending on the input state of the P30/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20①) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20@).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20[®]).

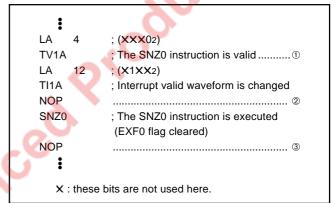


Fig. 20 External 0 interrupt program example-3

(5) Notes on External 1 interrupt

① Note [1] on bit 3 of register I2

When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

• Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 21①) and then, change the bit 3 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 21®).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 21③).

```
LA
            ; (XX0X2)
TV1A
            ; The SNZ1 instruction is valid ...... ①
LA
            ; (1XXX2)
TI2A
            ; Control of INT1 pin input is changed
NOP
            SNZ1
            ; The SNZ1 instruction is executed
            (EXF1 flag cleared)
NOP
   i
  X: these bits are not used here.
```

Fig. 21 External 1 interrupt program example-1

- 2 Note [2] on bit 3 of register I2
 - When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.
- When the input of INT1 pin is disabled (register I23 = "0"), set the key-on wakeup function to be invalid (register K22 = "0") before system enters to the RAM back-up mode. (refer to Figure 22①).

```
LA 0 ; (X0XX2)

TK2A ; Input of INT1 key-on wakeup invalid .. ①

DI

EPOF

POF ; RAM back-up

X: these bits are not used here.
```

Fig. 22 External 1 interrupt program example-2

- Note on bit 2 of register I2
 When the interrupt valid waveform of the P
- When the interrupt valid waveform of the P31/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.
- Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 23①) and then, change the bit 2 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 23[®]).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 23³).

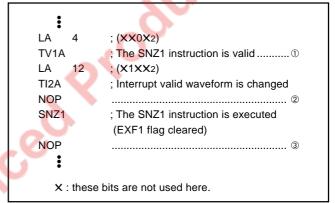


Fig. 23 External 1 interrupt program example-3

TIMERS

The 4583 Group has the following timers.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

• Fixed dividing frequency timer The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

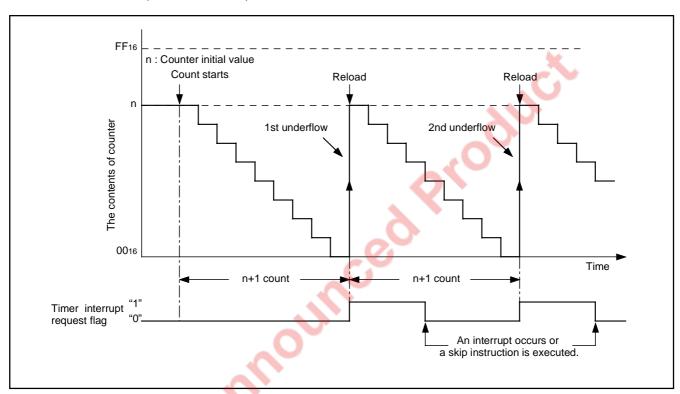


Fig. 24 Auto-reload function

The 4583 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1 : 8-bit programmable timer
- Timer 2: 8-bit programmable timer
- Timer 3: 8-bit programmable timer
- Timer 4: 8-bit programmable timer
- · Watchdog timer: 16-bit fixed dividing frequency timer (Timers 1, 2, 3, and 4 have the interrupt function, respectively)

Prescaler and timers 1, 2, 3, and 4 can be controlled with the timer control registers PA, W1 to W6. The watchdog timer is a free counter which is not controlled with the control register. Each function is described below.

Timer 1 8	8-bit programmable binary down counter	Instruction clock (INSTCK)	dividing ratio	Use of output signal	Control register
Timer 1 8	<u> </u>		1 to 256	• Timer 1, 2, 3, amd 4 count sources	PA
	0 bit programmable				
b	8-bit programmable	Instruction clock (INSTCK)	1 to 256	Timer 2 count source	W1
	binary down counter	Prescaler output (ORCLK)		CNTR0 output	W2
(1	(link to INT0 input)	XIN input		Timer 1 interrupt	W5
(1	(period/pulse width	CNTR0 input			
n	measurement function)				
Timer 2 8	8-bit programmable	System clock (STCK)	1 to 256	Timer 3 count source	W2
b	binary down counter	Prescaler output (ORCLK)		CNTR0 output	
		Timer 1 underflow		Timer 2 interrupt	
		(T1UDF)		. 6	
		PWM output (PWMOUT)			
Timer 3 8	8-bit programmable	PWM output (PWMOUT)	1 to 256	CNTR1 output control	W3
b	binary down counter	Prescaler output (ORCLK)		Timer 3 interrupt	
	(link to INT1 input)	Timer 2 underflow			
	. ,	(T2UDF)		-40	
		CNTR1 input	4		
Timer 4 8	8-bit programmable	XIN input	1 to 256	• Timer 2, 3 count source	W4
	binary down counter	Prescaler output (ORCLK)		CNTR1 output	
(1	(PWM output function)			Timer 4 interrupt	
	16-bit fixed dividing	Instruction clock (INSTCK)	65534	System reset (count twice)	
	frequency	,		WDF flag decision	
		annour			

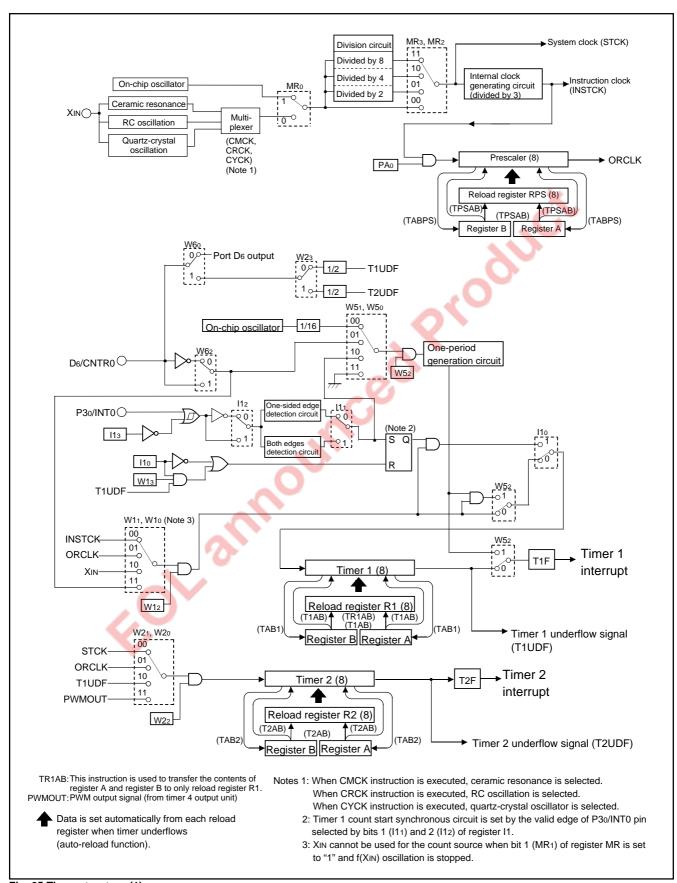


Fig. 25 Timer structure (1)

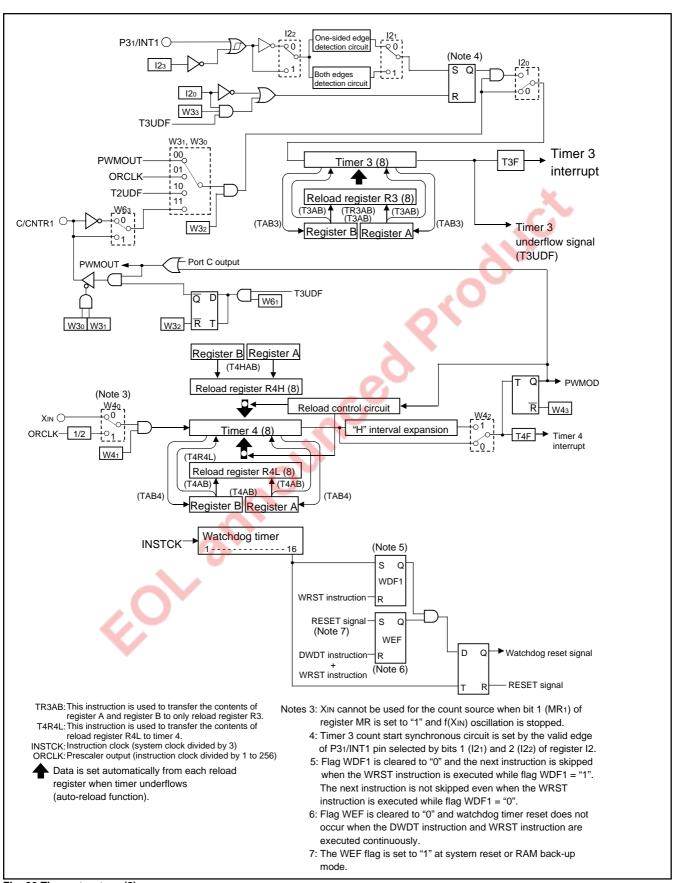


Fig. 26 Timer structure (2)

Table 10 Timer related registers

	Timer control register PA	at reset : 02		at RAM back-up : 02	W TPAA
PA ₀	Prescaler control bit	0	Stop (state initialize	ed)	
170	1 Tescaler control bit	1	Operating		

	Timer control register W1		at reset : 00002		at RAM back-up : state retained	R/W TAW1/TW1A	
W13	Timer 1 count auto-stop circuit selection	(0	Timer 1 count auto	-stop circuit not selected		
**15	bit (Note 2)		1	Timer 1 count auto	-stop circuit selected		
W12	W12)	Stop (state retained)			
VV 12	Timer 1 control bit		1	Operating			
		W11	W10		Count source		
W11		0	0	Instruction clock (II	NSTCK)		
	Timer 1 count source selection bits	0	1	Prescaler output (0	DRCLK)		
W10		1	0	XIN input			
		1	1	CNTR0 input			
	•				40		

	Timer control register W2		at	at reset : 00002	R/W V2/TW2A	
W23	CNTR0 output signal selection bit		0	Timer 1 underflow signal divided by 2 output		
1 1123	Civi No output signal selection bit	1		Timer 2 underflow signal divided by 2 output		
W22	W22 Timer 2 control bit		0	Stop (state retained)		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Timer 2 control bit		1	Operating		
14/0		W21	W20	Count source		
W21		0	0	System clock (STCK)		
	Timer 2 count source selection bits	0	1	Prescaler output (ORCLK)		
W20		1	0	Timer 1 underflow signal (T1UDF)		
			1	PWM signal (PWMOUT)		

	Timer control register W3			reset: 00002	at RAM back-up : state retained	R/W TAW3/TW3A		
W33	Timer 3 count auto-stop circuit selection		0	Timer 3 count auto-stop circuit not selected		•		
*****	bit (Note 3)	1		Timer 3 count auto-stop circuit selected				
W32	W/32 Time at 0 and to 1 bit		Times 2 control bit		0	Stop (state retained	1)	
VV32	Timer 3 control bit		1	Operating				
1440		W31	W30		Count source			
W31	Times 2 sound source calculing hite	0	0	PWM signal (PWM0	OUT)			
	Timer 3 count source selection bits	0	1	Prescaler output (ORCLK)				
W30	(Note 4)	1	0	Timer 2 underflow s	signal (T2UDF)			
			1	CNTR1 input				

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").
- 3: This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").
- 4: The port C output is invalid when CNTR1 output is selected for the timer 3 count source.

	Timer control register W4		reset: 00002	at RAM back-up : 00002	R/W
	Timor control regioter 11 1	a.	10001.00002	at 10 th baok up : 00002	TAW4/TW4A
W43	//o CNTD4 nin outnut control hit		CNTR1 output inva	alid	
VV43	W43 CNTR1 pin output control bit	1	CNTR1 output vali		
W42	PWM signal	0	PWM signal "H" in	terval expansion function invalid	
VV42	"H" interval expansion function control bit	1	PWM signal "H" in	terval expansion function valid	
W41	Times 4 control bit	0	Stop (state retaine	d)	
VV41	Timer 4 control bit	1	Operating		
W40	N/4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	XIN input		
VV40	Timer 4 count source selection bit	4	Dragoslar output //	2DCLK) 45.54-4 b0	

Prescaler output (ORCLK) divided by 2

Timer control register W5			at	reset : 00002	at RAM back-up : state retained	R/W TAW5/TW5A
W53	Not used)	This bit has no function, but read/write is enabled.		
		1				
W52	Period measurement circuit control bit	0		Stop		
		1		Operating		
W51	Signal for period measurement selection bits	W51	W50	Count source		
		0	0	On-chip oscillator (f(RING/16))	
		0	1	CNTR ₀ pin input		
W50		1	0	INT0 pin input	•	
			1	Not available		

Timer control register W6				at	reset : 00002	at RAM back-up : state retained	R/W TAW6/TW6A	
W63	CNTR1 pin input count edge selection bit		0	4	Falling edge			
			1		Rising edge			
W62	CNTR0 pin input count edge selection bit	_	0	P	Falling edge			
			1		Rising edge			
W61	CNTR1 output auto-control circuit				CNTR1 output auto-control circuit not selected			
	selection bit				CNTR1 output auto-control circuit selected			
W60	D6/CNTR0 pin function selection bit	0			D6 (I/O) / CNTR0 (input)			
			1 CNTR0 (I/O) /D6 (input)					

Note: "R" represents read enabled, and "W" represents write enabled.

(1) Timer control registers

· Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

· Timer control register W1

Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

Timer control register W2

Register W2 controls the selection of CNTR0 output, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

· Timer control register W3

Register W3 controls the selection of the count operation and count source of timer 3 count auto-stop circuit. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

· Timer control register W4

Register W4 controls the CNTR1 output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 4. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A.

• Timer control register W5

Register W5 controls the period measurement circuit and target signal for period measurement. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

• Timer control register W6

Register W6 controls the count edges of CNTR0 pin and CNTR1 pin, selection of CNTR1 output auto-control circuit and the D6/CNTR0 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

(2) Prescaler

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

① set data in prescaler, and

2 set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1, 2, 3, and 4 count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

① set data in timer 1

2 set count source by bits 0 and 1 of register W1, and

3 set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

INT0 pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register I1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."

Timer 1 underflow signal divided by 2 can be output from CNTR0 pin by clearing bit 3 of register W2 to "0" and setting bit 0 of register W6 to "1".

The period measurement circuit starts operating by setting bit 2 of register W5 to "1" and timer 1 is used to count the one-period of the target signal for the period measurement. In this time, the timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Data can be read from timer 2 with the TAB2 instruction. Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

Timer 2 starts counting after the following process;

- 1) set data in timer 2.
- 2 select the count source with the bits 0 and 1 of register W2, and
- 3 set the bit 2 of register W2 to "1."

When a value set in reload register R2 is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).

Timer 2 underflow signal divided by 2 can be output from CNTR0 pin by setting bit 3 of register W2 to "1" and setting bit 0 of register W6 to "1".

(5) Timer 3 (interrupt function)

Timer 3 is an 8-bit binary down counter with the timer 3 reload register (R3). Data can be set simultaneously in timer 3 and the reload register (R3) with the T3AB instruction. Data can be written to reload register (R3) with the TR3AB instruction. Data can be read from timer 3 with the TAB3 instruction.

Stop counting and then execute the T3AB or TAB3 instruction to read or set timer 3 data.

When executing the TR3AB instruction to set data to reload register R3 while timer 3 is operating, avoid a timing when timer 3 underflows.

Timer 3 starts counting after the following process;

- ① set data in timer 3
- 2 set count source by bits 0 and 1 of register W3, and
- 3 set the bit 2 of register W3 to "1."

When a value set in reload register R3 is n, timer 3 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes "0"), the timer 3 interrupt request flag (T3F) is set to "1," new data is loaded from reload register R3, and count continues (auto-reload function).

INT1 pin input can be used as the start trigger for timer 3 count operation by setting the bit 0 of register I2 to "1."

Also, in this time, the auto-stop function by timer 3 underflow can be performed by setting the bit 3 of register W3 to "1."

(6) Timer 4 (interrupt function)

Timer 4 is an 8-bit binary down counter with two timer 4 reload registers (R4L, R4H). Data can be set simultaneously in timer 4 and the reload register R4L with the T4AB instruction. Data can be set in the reload register R4H with the T4HAB instruction. The contents of reload register R4L set with the T4AB instruction can be set to timer 4 again with the T4R4L instruction. Data can be read from timer 4 with the TAB4 instruction.

Stop counting and then execute the T4AB or TAB4 instruction to read or set timer 4 data.

When executing the T4HAB instruction to set data to reload register R4H while timer 4 is operating, avoid a timing when timer 4 underflows.

Timer 4 starts counting after the following process;

- 1 set data in timer 4
- 2 set count source by bit 0 of register W4, and
- 3 set the bit 1 of register W4 to "1."

When a value set in reload register R4L is n, timer 4 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 4 underflows (the next count pulse is input after the contents of timer 4 becomes "0"), the timer 4 interrupt request flag (T4F) is set to "1," new data is loaded from reload register R4L, and count continues (auto-reload function).

The PWM signal generated by timer 4 can be output from CNTR1 pin by setting bit 3 of the timer control register W4 to "1".

Timer 4 can control the PWM output to CNTR1 pin with timer 3 by setting bit 1 of the timer control register W6 to "1".

PRELIMINARY Notice: This is not a final specification Some parametric limits are subject to change

(7) Period measurement function (Timer 1, period measurement circuit)

Timer 1 has the period measurement circuit which performs timer count operation synchronizing with the one cycle of the signal divided by 16 of an on-chip oscillator, D6/CNTR0 pin input, or P30/ INTO pin input (one cycle, "H", or "L" pulse width at the case of a P30/INT0 pin input).

When the target signal for period measurement is set by bits 0 and 1 of register W5, a period measurement circuit is started by setting the bit 2 of register W5 to "1".

Then, if a XIN input is set as the count source of a timer 1 and the bit 2 of register W1 is set to "1", timer 1 starts operation.

Timer 1 starts operation synchronizing with the falling edge of the target signal for period measurement, and stops count operation synchronizing with the next falling edge (one-period generation circuit).

When selecting D6/CNTR0 pin input as target signal for period measurement, the period measurement synchronous edge can be changed into a rising edge by setting the bit 2 of register W6 to "1".

When selecting P3o/INT0 pin input as target signal for period measurement, period measurement synchronous edge can be changed into a rising edge by setting the bit 2 of register I1 to "1". A timer 1 interrupt request flag (T1F) is set to "1" after completing measurement operation.

When a period measurement circuit is set to be operating, timer 1 interrupt request flag (T1F) is not set by timer 1 underflow signal, but turns into a flag which detects the completion of period measurement.

In addition, a timer 1 underflow signal can be used as timer 2 count source.

Once period measurement operation is completed, even if period measurement valid edge is input next, timer 1 is in a stop state and measurement data is held.

When a period measurement circuit is used again, stop a period measurement circuit at once by setting the bit 2 of register W5 to "0", and change a period measurement circuit into a state of operation by setting the bit 2 of register W5 to "1" again.

When a period measurement circuit is used, clear bit 0 of register I1 to "0", and set a timer 1 count start synchronous circuit to be "not selected".

Start timer operation immediately after operation of a period measurement circuit is started.

When the target edge for measurement is input until timer operation is started from the operation of period measurement circuit is started, the count operation is not executed until the timer operation becomes valid. Accordingly, be careful of count data.

When data is read from timer, stop the timer and clear bit 2 of register W5 to "0" to stop the period measurement circuit, and then execute the data read instruction.

Depending on the state of timer 1, the timer 1 interrupt request flag (T1F) may be set to "1" when the period measurement circuit is stopped by clearing bit 2 of register W5 to "0". In order to avoid the occurrence of an unexpected interrupt, clear the bit 2 of register V1 to "0" (refer to Figure 271) and then, stop the bit 2 of register W5 to "0" to stop the period measurement circuit.

In addition, execute the SNZT1 instruction to clear the T1F flag after executing at least one instruction (refer to Figure 272). Also, set the NOP instruction for the case when a skip is performed with the SNZT1 instruction (refer to Figure 273).

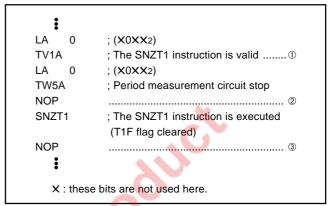


Fig. 27 Period measurement circuit program example

When a period measurement circuit is used, select the sufficiently higher-speed frequency than the signal for measurement for the count source of a timer 1.

When the target signal for period measurement is D6/CNTR0 pin input, do not select D6/CNTR0 pin input as timer 1 count source. (The XIN input is recommended as timer 1 count source at the time of period measurement circuit use.)

(8) Pulse width measurement function (timer 1, period measurement circuit)

A period measurement circuit can measure "H" pulse width (from rising to falling) or "L" pulse width (from falling to rising) of P30/ INTO pin input (pulse width measurement function) when the following is set;

- Set the bit 0 of register W5 to "0", and set a bit 1 to "1" (target for period measurement circuit: 30/INT0 pin input).
- Set the bit 1 of register I1 to "1" (INT0 pin edge detection circuit: both edges detection)

The measurement pulse width ("H" or "L") is decided by the period measurement circuit and the P3o/INT0 pin input level at the start time of timer operation.

At the time of the start of a period measurement circuit and timer operation, "L" pulse width (from falling to rising) when the input level of P3o/INT0 pin is "H" or "H" pulse width (from rising to falling) when its level is "L" is measured.

When the input of P30/INT0 pin is selected as the target for measurement, set the bit 3 of register I1 to "1", and set the input of INT0 pin to be enabled.

(9) Count start synchronization circuit (timer 1, timer 3)

Timer 1 and timer 3 have the count start synchronous circuit which synchronizes the input of INT0 pin and INT1 pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to "1" and the control by INT0 pin input can be performed.

Timer 3 count start synchronous circuit function is selected by setting the bit 0 of register I2 to "1" and the control by INT1 pin input can be performed.

When timer 1 or timer 3 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT0 pin or INT1 pin.

The valid waveform of INT0 pin or INT1 pin to set the count start synchronous circuit is the same as the external interrupt activated condition

Once set, the count start synchronous circuit is cleared by clearing the bit I10 or I20 to "0" or reset.

However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 or timer 3 underflow.

(10) Count auto-stop circuit (timer 1, timer 3)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

Timer 3 has the count auto-stop circuit which is used to stop timer 3 automatically by the timer 3 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W3 to "1". It is cleared by the timer 3 underflow and the count source to timer 3 is stopped.

This function is valid only when the timer 3 count start synchronous circuit is selected.

(11) Timer input/output pin (D6/CNTR0 pin, C/CNTR1 pin)

CNTR0 pin is used to input the timer 1 count source and output the timer 1 and timer 2 underflow signal divided by 2.

CNTR1 pin is used to input the timer 3 count source and output the PWM signal generated by timer 4.

When the PWM signal is output from C/CNTR1 pin, set the output latch of port C to "0".

The D6/CNTR0 pin function can be selected by bit 0 of register W6. The selection of CNTR1 output signal can be controlled by bit 3 of register W4.

When the CNTR0 input is selected for timer 1 count source, timer 1 counts the rising or falling waveform of CNTR0 input. The count edge is selected by the bit 2 of register W6.

When the CNTR1 input is selected for timer 3 count source, timer 3 counts the rising or falling waveform of CNTR1 input. The count edge is selected by the bit 3 of register W6.

When CNTR1 input is selected, the output of port C is invalid (high-impedance).

(12) PWM output function (C/CNTR1, timer 3, timer 4)

When bit 3 of register W4 is set to "1", timer 4 reloads data from reload register R4L and R4H alternately each underflow.

Timer 4 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R4L, and the "H" interval set as reload register R4H. The PWM signal (PWMOUT) is output from CNTR1 pin.

When bit 2 of register W4 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R4H for the counter of timer 4 is extended for a half period of count source.

In this case, when a value set in reload register R4H is n, timer 4 divides the count source signal by n + 1.5 (n = 1 to 255).

When this function is used, set "1" or more to reload register R4H. When bit 1 of register W6 is set to "1", the PWM signal output to CNTR1 pin is switched to valid/invalid each timer 3 underflow. However, when timer 3 is stopped (bit 2 of register W3 is cleared to "0"), this function is canceled.

Even when bit 1 of a register W4 is cleared to "0" in the "H" interval of PWM signal, timer 4 does not stop until it next timer 4 underflow. When clearing bit 1 of register W4 to "0" to stop timer 4 at the use of PWM output function, avoid a timing when timer 4 underflows.

(13) Timer interrupt request flags (T1F, T2F, T3F, T4F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3, SNZT4).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction. The timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.

(14) Precautions

Note the following for the use of timers.

Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

· Timer count source

Stop timer 1, 2, 3 and 4 counting to change its count source.

· Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

· Writing to the timer

Stop timer 1, 2, 3 or 4 counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB) to write its data.

· Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload regiser R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

Timer 4

Avoid a timing when timer 4 underflows to stop timer 4 at the use of PWM output function.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

• Timer input/output pin

When the PWM signal is output from C/CNTR1 pin, set the output latch of port C to "0".

• Period measurement function

When a period measurement circuit is used, clear bit 0 of register I1 to "0", and set a timer 1 count start synchronous circuit to be "not selected".

Start timer operation immediately after operation of a period measurement circuit is started.

When the target edge for measurement is input until timer operation is started from the operation of period measurement circuit is started, the count operation is not executed until the timer operation becomes valid. Accordingly, be careful of count data.

When data is read from timer, stop the timer and clear bit 2 of register W5 to "0" to stop the period measurement circuit, and then execute the data read instruction.

Depending on the state of timer 1, the timer 1 interrupt request flag (T1F) may be set to "1" when the period measurement circuit is stopped by clearing bit 2 of register W5 to "0". In order to avoid the occurrence of an unexpected interrupt, clear the bit 2 of register V1 to "0" (refer to Figure 28①) and then, stop the bit 2 of register W5 to "0" to stop the period measurement circuit.

In addition, execute the SNZT1 instruction to clear the T1F flag after executing at least one instruction (refer to Figure 282).

Also, set the NOP instruction for the case when a skip is performed with the SNZT1 instruction (refer to Figure 283).

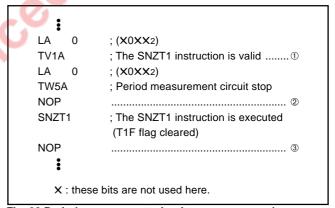


Fig. 28 Period measurement circuit program example

While a period measurement circuit is operating, the timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.

When a period measurement circuit is used, select the sufficiently higher-speed frequency than the signal for measurement for the count source of a timer 1.

When the target signal for period measurement is D6/CNTR0 pin input, do not select D6/CNTR0 pin input as timer 1 count source. (The XIN input is recommended as timer 1 count source at the time of period measurement circuit use.)

When the input of P30/INT0 pin is selected for measurement, set the bit 3 of a register I1 to "1", and set the input of INTO pin to be enabled.

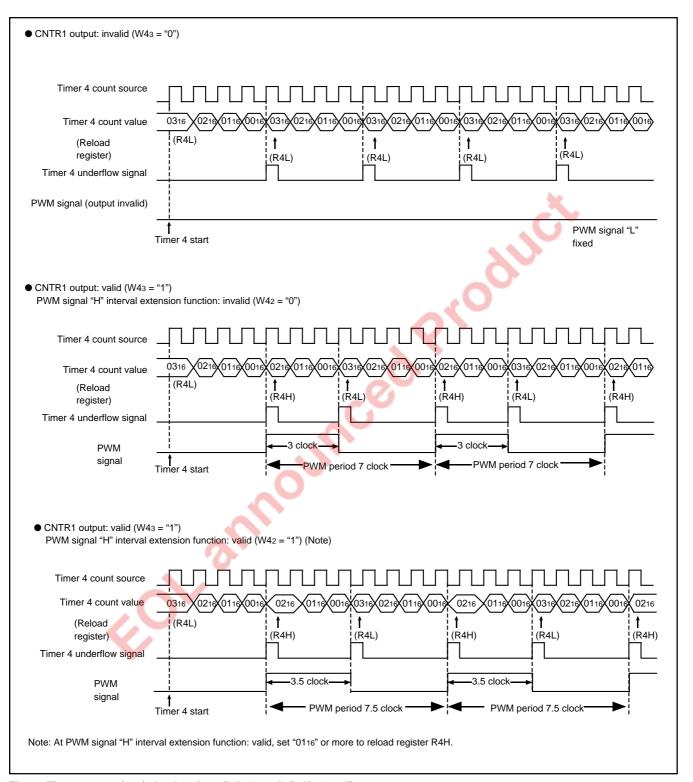
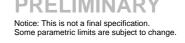



Fig. 29 Timer 4 operation (reload register R4L: "0316", R4H: "0216")

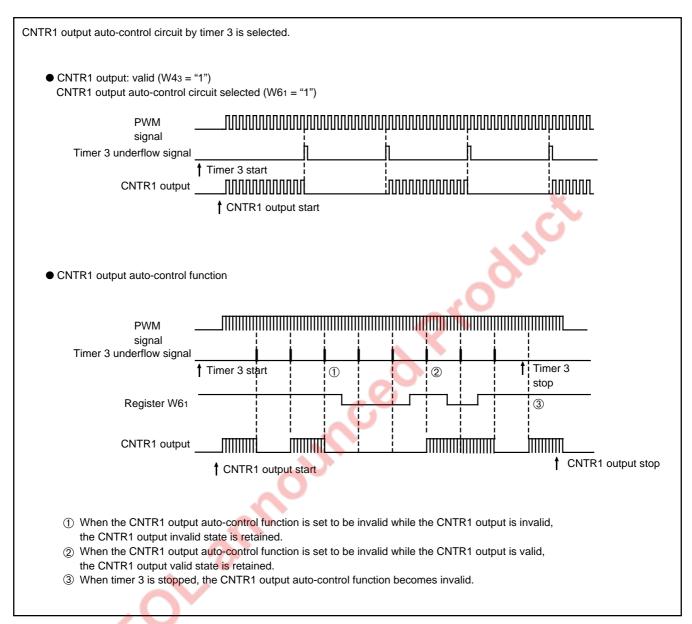


Fig. 30 CNTR1 output auto-control function by timer 3

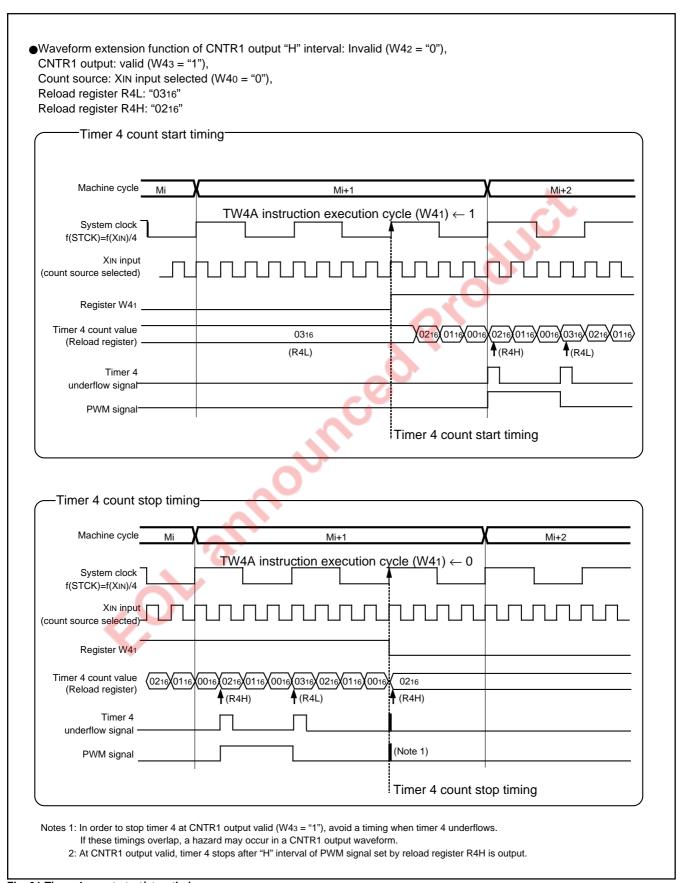


Fig. 31 Timer 4 count start/stop timing

WATCHDOG TIMER

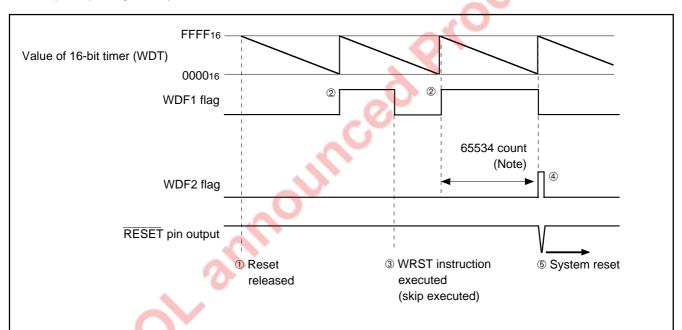
Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the $\overline{\text{RESET}}$ pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.


When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

- ① After system is released from reset (= after program is started), timer WDT starts count down.
- 2 When timer WDT underflow occurs, WDF1 flag is set to "1."
- ③ When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 32 Watchdog timer function

Notice: This is not a linial specification.

Some parametric limits are subject to change.

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 33). The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.

When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state (refer to Figure 34). The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

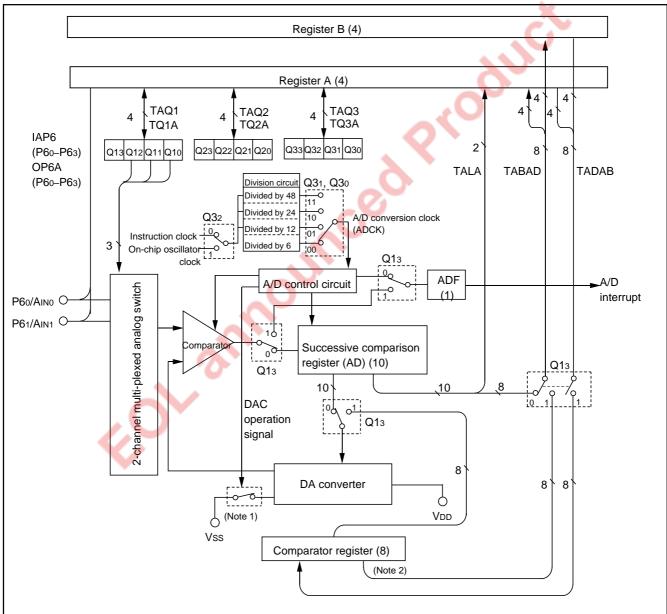
```
WRST; WDF1 flag cleared

DI
DWDT; Watchdog timer function enabled/disabled
WRST; WEF and WDF1 flags cleared
```

Fig. 33 Program example to start/stop watchdog timer

```
WRST; WDF1 flag cleared
NOP
DI; Interrupt disabled
EPOF; POF instruction enabled
POF

↓
Oscillation stop
```


Fig. 34 Program example to enter the mode when using the watchdog timer

A/D CONVERTER (Comparator)

The 4583 Group has a built-in A/D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A/D converter. This A/D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 11 A/D converter characteristics

	abio 11742 convertor characteriones					
Parameter	Characteristics					
Conversion format	Successive comparison method					
Resolution	10 bits					
Relative accuracy	Linearity error: ±2LSB (2.7 V ≤ VDD ≤ 5.5V)					
	Differential non-linearity error:					
	± 0.9 LSB (2.2 V \leq VDD \leq 5.5V)					
Conversion speed	31 μ s (f(XIN) = 6 MHz, STCK = f(XIN) (XIN through-mode), ADCK = INSTCK/6)					
Analog input pin	2					

Notes 1: This switch is turned ON only when A/D converter is operating and generates the comparison voltage.

2: Writing/reading data to the comparator register is possible only in the comparator mode (Q13=1). The value of the comparator register is retained even when the mode is switched to the A/D conversion mode (Q13=0) because it is separated from the successive comparison register (AD). Also, the resolution in the comparator mode is 8 bits because the comparator register consists of 8 bits.

Fig. 35 A/D conversion circuit structure

Table 12 A/D control registers

	A/D control register Q1		reset : 00002	at RAM back-up : state retained	R/W TAQ1/TQ1A	
Q13	A/D operation mode selection bit	0	A/D conversion mo	de		
QIS	Q13 A/D operation mode selection bit		Comparator mode			
Q12	Not used	0	This bit has no function, but read/write is enabled.			
Q12		1				
Q11	Not used	0	This hit has no fun	ction, but read/write is enabled.		
QII	Not useu	1	THIS DICTION TO TUIT	Silon, but read/write is enabled.		
Q10	Analog input pin selection bits	0	AIN0			
العا ا	Analog input pin selection bits	1	AIN1			

		l			5.44
	A/D control register Q2		reset: 00002	at RAM back-up : state retained	R/W
				·	TAQ2/TQ2A
Q23	Q23 Not used		This hit has no fun	ction, but road/write is enabled	
QZS	Not used	1	This bit has no function, but read/write is enabled.		
Q22	O20 Not word		This bit has no function, but read/write is enabled.		
Q22	Not used	1	This bit has no function, but read/white is enabled.		
Q21	On Portagnation of a street and a time bit		P61		
QZI	P61/AIN1 pin function selection bit	1	AIN1		
020	Q20 P60/AIN0 pin function selection bit	0	P60		
Q20		1	AIN0		

	A/D control register Q3		at reset : 00002		at RAM back-up : state retained	R/W TAQ3/TQ3A
Q33	Not used	1		This bit has no fund	ction, but read/write is enabled.	
032	Q32 A/D converter operation clock selection bit			Instruction clock (II	NSTCK)	
Q32				On-chip oscillator (f(RING))	
		Q31	Q30		Division ratio	
Q31	A/D converter operation clock division ratio selection bits	0	0	Frequency divided	by 6	
		0	1	Frequency divided	by 12	
Q30		1	0	Frequency divided	by 24	
		1	1	Frequency divided	by 48	

Note: "R" represents read enabled, and "W" represents write enabled.

(1) A/D control register

A/D control register Q1

Register Q1 controls the selection of A/D operation mode and the selection of analog input pins. Set the contents of this register through register A with the TQ1A instruction. The TAQ1 instruction can be used to transfer the contents of register Q1 to register A.

• A/D control register Q2

Register Q2 controls the selection of P60/AIN0, P61/AIN1. Set the contents of this register through register A with the TQ2A instruction. The TAQ2 instruction can be used to transfer the contents of register Q2 to register A.

A/D control register Q3

Register Q3 controls the selection of A/D converter operation clock. Set the contents of this register through register A with the TQ3A instruction. The TAQ3 instruction can be used to transfer the contents of register Q3 to register A.

(2) Operating at A/D conversion mode

The A/D conversion mode is set by setting the bit 3 of register Q1 to "0."

(3) Successive comparison register AD

Register AD stores the A/D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A/D conversion.

When the contents of register AD is n, the logic value of the comparison voltage Vref generated from the built-in DA converter can be obtained with the reference voltage VDD by the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{1024} \times n$$

n: The value of register AD (n = 0 to 1023)

(4) A/D conversion completion flag (ADF)

A/D conversion completion flag (ADF) is set to "1" when A/D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(5) A/D conversion start instruction (ADST)

A/D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

(6) Operation description

A/D conversion is started with the A/D conversion start instruction (ADST). The internal operation during A/D conversion is as follows:

- ① When the A/D conversion starts, the register AD is cleared to "00016."
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage Vref is compared with the analog input voltage VIN
- When the comparison result is Vref < VIN, the topmost bit of the register AD remains set to "1." When the comparison result is Vref > VIN, it is cleared to "0."

The 4583 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A/D conversion stops after 2 machine cycles + A/D conversion clock (31 μ s when f(XIN) = 6.0 MHz in XIN through mode, f(ADCK) = f(INSTCK)/6) from the start, and the conversion result is stored in the register AD. An A/D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A/D conversion completes (Figure 36).

Table 13 Change of successive comparison register AD during A/D conversion

At starting conversion	Change of successive comparison register AD Comparison voltage (Vref) value
1st comparison	1 0 0 0 0 0 0 VDD 2
2nd comparison	*1 1 0 0 0 0 VDD 2 ± VDD 4
3rd comparison	*1 *2 1 0 0 0 0 2 ± 4 ± 8
After 10th comparison completes	A/D conversion result *1 *2 *3 *8 *9 *A VDD ± VDD 1024

*1: 1st comparison result*3: 3rd comparison result*9: 9th comparison result

*2: 2nd comparison result*8: 8th comparison result

*A: 10th comparison result

(7) A/D conversion timing chart

Figure 36 shows the A/D conversion timing chart.

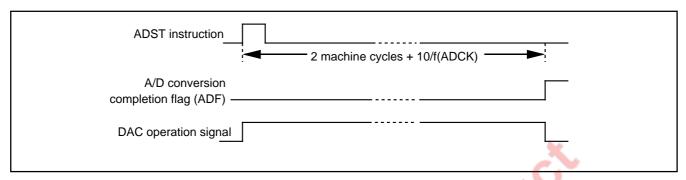


Fig. 36 A/D conversion timing chart

(8) How to use A/D conversion

How to use A/D conversion is explained using as example in which the analog input from P60/AIN0 pin is A/D converted, and the highorder 4 bits of the converted data are stored in address M(Z, X, Y) = (0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1), and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM. The A/D interrupt is not used in this example.

Instruction clock/6 is selected as the A/D converter operation clock.

- ① Select the AIN0 pin function with the bit 0 of the register Q2. Select the AINO pin function and A/D conversion mode with the register Q1. Also, the instruction clock divided by 6 is selected with the register Q3. (refer to Figure 37)
- 2 Execute the ADST instruction and start A/D conversion.
- 3 Examine the state of ADF flag with the SNZAD instruction to determine the end of A/D conversion.
- 4 Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- Transfer the contents of register A to M (Z, X, Y) = (0, 0, 2).
- ® Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).
- ® Transfer the contents of register B to register A, and then, store into M(Z, X, Y) = (0, 0, 0).

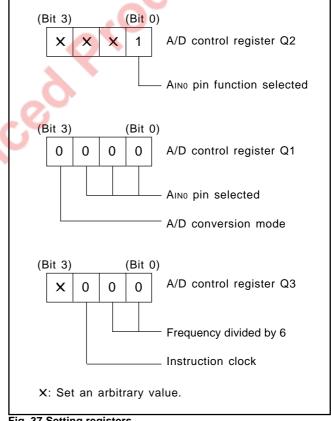


Fig. 37 Setting registers

(9) Operation at comparator mode

The A/D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."

Below, the operation at comparator mode is described.

(10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A/D conversion mode to comparator mode, the result of A/D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A/D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage V_{ref} generated by the built-in DA converter can be determined from the following formula:

Logic value of comparison voltage
$$V_{ref}$$

$$V_{ref} = \frac{V_{DD}}{256} \times n$$
n: The value of register AD (n = 0 to 255)

(11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A/D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 2 machine cycles + A/D conversion clock f(ADCK) 1 clock after it has started (4 μ s at f(XIN) = 6.0 MHz in XIN through mode, f(ADCK) = f(INSTCK)/6). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1"

(13) Notes for the use of A/D conversion

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

Operation mode of A/D converter

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

Clear the bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode.

The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the register Q1, and execute the SNZAD instruction to clear the ADF flag.

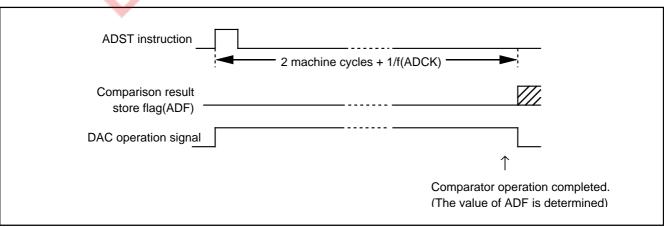


Fig. 38 Comparator operation timing chart

(14) Definition of A/D converter accuracy

The A/D conversion accuracy is defined below (refer to Figure 39).

· Relative accuracy

① Zero transition voltage (VoT)

This means an analog input voltage when the actual A/D conversion output data changes from "0" to "1."

② Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A/D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between VoT and VFST of a converted value between VoT and VFST.

Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics.

Vn: Analog input voltage when the output data changes from "n" to "n+1" (n = 0 to 1022)

• 1LSB at relative accuracy
$$\rightarrow \frac{VFST-V0T}{1022}$$
 (V)

• 1LSB at absolute accuracy
$$\rightarrow \frac{VDD}{1024}$$
 (V)

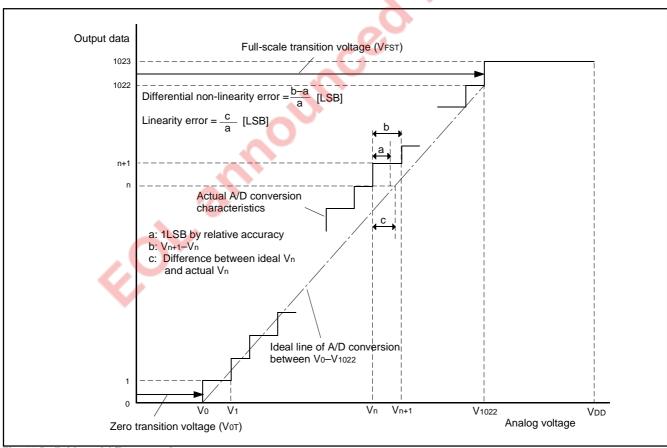


Fig. 39 Definition of A/D conversion accuracy

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to $\overline{\text{RESET}}$ pin, software starts from address 0 in page 0.

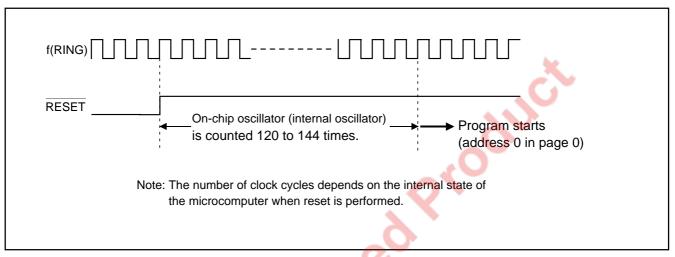


Fig. 40 Reset release timing

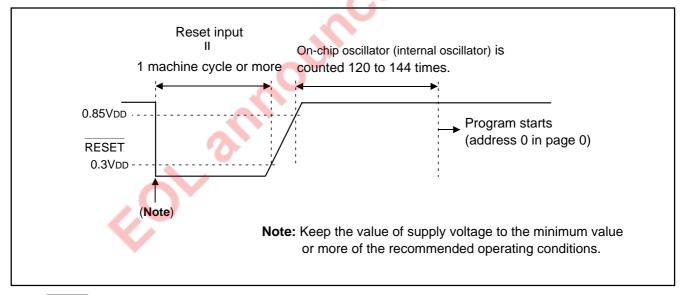


Fig. 41 RESET pin input waveform and reset operation

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V until the value of supply voltage reaches the minimum operating voltage must be set to 100 μ s or less.

If the rising time exceeds 100 μ s, connect a capacitor between the $\overline{\text{RESET}}$ pin and Vss at the shortest distance, and input "L" level to $\overline{\text{RESET}}$ pin until the value of supply voltage reaches the minimum operating voltage.

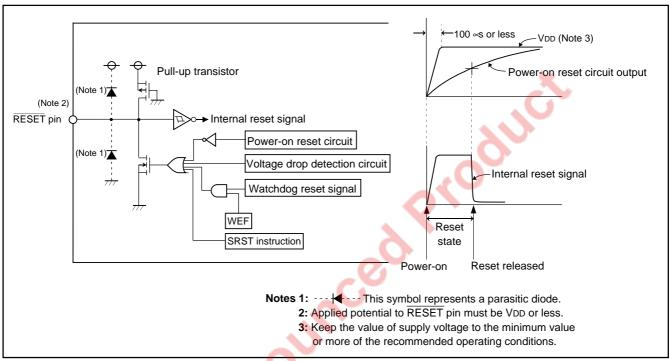


Fig. 42 Structure of reset pin and its peripherals, and power-on reset operation

Table 14 Port state at reset

Table 14 Full State at leset	ble 14 Folt State at reset						
Name	Function	State					
D0-D5	D0-D5	High-impedance (Notes 1, 2)					
D6/CNTR0	D6	High-impedance (Notes 1, 2)					
C/CNTR1	С	"L" (Vss) level					
P00-P03	P00-P03	High-impedance (Notes 1, 2, 3)					
P10-P13	P10-P13	High-impedance (Notes 1, 2, 3)					
P20, P21, P22	P20-P22	High-impedance (Note 1)					
P30/INT0, P31/INT1	P30, P31	High-impedance (Note 1)					
P60/AIN0, P61/AIN1, P62, P63	P60-P63	High-impedance (Note 1)					

Notes 1: Output latch is set to "1."

- 2: Output structure is N-channel open-drain.
- 3: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 43 and 44 show internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure are undefined, so set the initial value to them.

Program counter (PC)	0 0 0 0 0 0 0 0 0 0 0 0 0 0
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	0 (Interrupt disabled)
Power down flag (P)	
External 0 interrupt request flag (EXF0)	0
External 1 interrupt request flag (EXF1)	
Interrupt control register V1	0 0 0 0 (Interrupt disabled)
Interrupt control register V2	0 0 0 0 (Interrupt disabled)
Interrupt control register I1	
Interrupt control register I2	0000
Timer 1 interrupt request flag (T1F)	0
Timer 2 interrupt request flag (T2F)	
Timer 3 interrupt request flag (T3F)	0
Timer 4 interrupt request flag (T4F)	0
Watchdog timer flags (WDF1, WDF2)	0
Watchdog timer enable flag (WEF)	
Timer control register PA	0 (Prescaler stopped)
Timer control register W1	
Timer control register W2	
Timer control register W3	
Timer control register W4	
Timer control register W5	
Timer control register W6	
Clock control register MR	
Clock control register RG	O (On-chip oscillator operating)
8-bit general register SIX X	X X X X X X
A/D conversion completion flag (ADF)	0
A/D control register Q1	
A/D control register Q2	
A/D control register Q3	
Successive comparison register ADX X X X	X X X X X X
Comparator register	X X X X X X
Key-on wakeup control register K0	
Key-on wakeup control register K1	
Key-on wakeup control register K2	0 0 0 0
Pull-up control register PU0	0 0 0 0
Pull-up control register PU1	0 0 0 0
	"X" represents undefined.

Fig. 43 Internal state at reset 1

"X" represents undefined.

Fig. 44 Internal state at reset 2

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

(1) SVDE instruction

When the SVDE instruction is executed, the voltage drop detection circuit is valid even after system enters into the RAM back-up mode. The SVDE instruction can be executed only once. In order to release the execution of the SVDE instruction, the system reset is required.

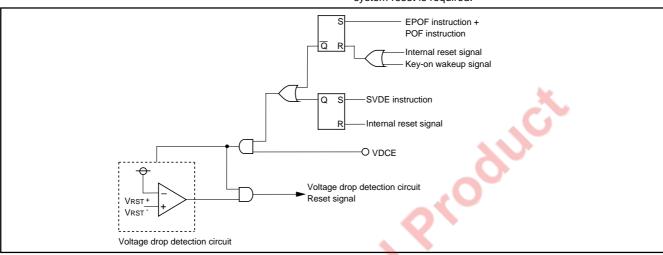


Fig. 45 Voltage drop detection reset circuit

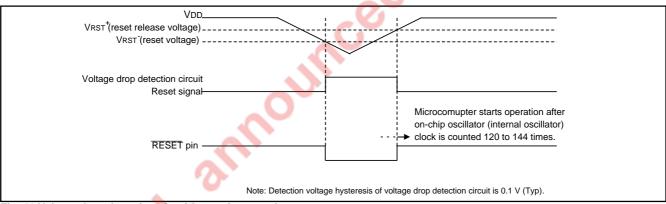


Fig. 46 Voltage drop detection circuit operation waveform

Table 15 Voltage drop detection circuit operation state

VDCE pin	At CPU operating	At RAM back-up (SVDE instruction not executed)	At RAM back-up (SVDE instruction executed)
"L"	Invalid	Invalid	Invalid
"H"	Valid	Invalid	Valid

(2) Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 47);

supply voltage does not fall below to VRST-, and

its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST- and re-goes up after that.

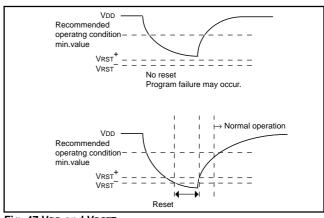


Fig. 47 VDD and VRST

RAM BACK-UP MODE

The 4583 Group has the RAM back-up mode.

When the EPOF and POF instructions are executed continuously, system enters the RAM back-up state. The POF instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF instruction.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM. Table 16 shows the function and states retained at RAM back-up. Figure 47 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the powerdown flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF and POF instructions continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when;

- reset pulse is input to RESET pin, or
- · reset by watchdog timer is performed, or
- voltage drop detection circuit detects the voltage drop, or
- SRST instruction is executed.

In this case, the P flag is "0."

Table 16 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B,	
carry flag (CY), stack pointer (SP) (Note 2)	×
Contents of RAM	0
Interrupt control registers V1, V2	×
Interrupt control registers I1, I2	0
Selection of oscillation circuit	0
Clock control register MR	×
Timer 1 function	(Note 3)
Timer 2 function	(Note 3)
Timer 3 function	(Note 3)
Timer 4 function	(Note 3)
Watchdog timer function	X (Note 4)
Timer control register PA, W4	×
Timer control registers W1 to W3, W5, W6	0
A/D conversion function	×
A/D control registers Q1 to Q3	0
Voltage drop detection circuit	(Note 5)
Port level	(Note 6)
Key-on wakeup control register K0 to K2	0
Pull-up control registers PU0, PU1	0
Port output direction registers FR0 to FR2	0
External 0 interrupt request flag (EXF0)	×
External 1 interrupt request flag (EXF1)	×
Timer 1 interrupt request flag (T1F)	(Note 3)
Timer 2 interrupt request flag (T2F)	(Note 3)
Timer 3 interrupt request flag (T3F)	(Note 3)
Timer 4 interrupt request flag (T4F)	(Note 3)
A/D conversion completion flag (ADF)	×
Interrupt enable flag (INTE)	×
Watchdog timer flags (WDF1, WDF2)	X (Note 4)
Watchdog timer enable flag (WEF)	X (Note 4)
Notes 1:"O" represents that the function can be retain	ed and "X" renre

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

> Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer with the WRST instruction, and then execute the POF instruction.
- 5: The voltage drop detection circuit is valid at RAM back-up when the SVDE instruction is executed while VDCE pin is "H".
- 6: In the RAM back-up mode, C/CNTR1 pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/ CNTR1 pin is in an input enabled state (output=high-impedance). Other ports retain their respective output levels.

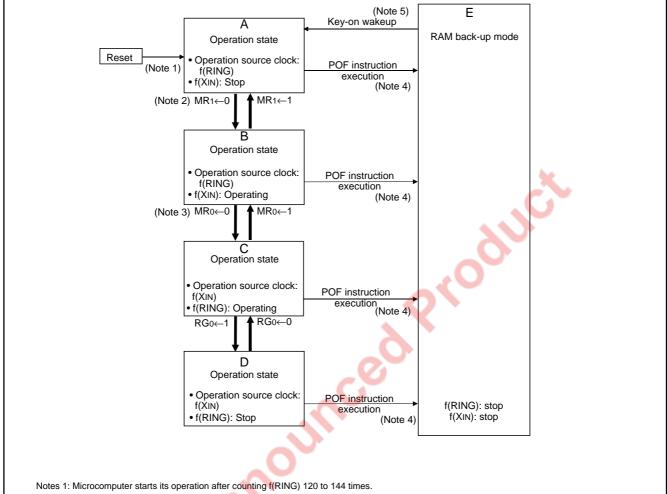
(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 17 shows the return condition for each return source.

(5) Related registers

- Key-on wakeup control register K0
 Register K0 controls the ports P0 and P1 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K1
 Register K1 controls the return condition and valid waveform/
 level selection for port P0. Set the contents of this register
 through register A with the TK1A instruction. In addition, the
 TAK1 instruction can be used to transfer the contents of register
 K1 to register A.
- Key-on wakeup control register K2
 Register K2 controls the INTO and INT1 key-on wakeup functions
 and return condition function. Set the contents of this register
 through register A with the TK2A instruction. In addition, the
 TAK2 instruction can be used to transfer the contents of register
 K2 to register A.

- Pull-up control register PU0
 - Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.
- Pull-up control register PU1
 Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be


used to transfer the contents of register PU0 to register A.

- External interrupt control register I1
 Register I1 controls the valid waveform of external 0 interrupt, input control of INT0 pin, and return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.
- External interrupt control register I2
 Register I2 controls the valid waveform of external 1 interrupt, input control of INT1 pin, and return input level. Set the contents of this register through register A with the TI2A instruction. In addition, the TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 17 Return source and return condition

R	Return source	Return condition	Remarks
signal	Ports P00-P03	"L" level input, or rising edge ("L" \rightarrow "H") or falling edge	The key-on wakeup function can be selected with 2 port units. Select the return level ("L" level or "H" level), and return condition (return by level or edge) with the register K1 according to the external state before going into the RAM back-up state.
akenb si	Ports P10-P13	put.	The key-on wakeup function can be selected with 2 port units. Set the port using the key-on wakeup function to "H" level before going into the RAM back-up state.
External wakeup	INT0 INT1	"L" level input, or rising edge	Select the return level ("L" level or "H" level) with the registers I1 and I2 according to the external state, and return condition (return by level or edge) with the register K2 before going into the RAM back-up state.
		The external interrupt request flags (EXF0, EXF1) are not set.	

- 2: The f(XIN) oscillation circuit (ceramic resonance, RC oscillation or quartz-crystal oscillation) selected by the CMCK, CRCK or CYCK instruction starts oscillating (the start of oscillation and the operation source clock is not switched by these instructions). The start/stop of oscillation and the operation source is switched by register MR.

 Surely, select the f(XIN) oscillation circuit by executing the CMCK, CRCK or CYCK instruction before clearing MR1 to "0".
- MR1 cannot be cleared to "0" when the oscillation circuit is not selected.
- 3: Generate the wait time by software until the oscillation is stabilized, and then, switch the system clock.
 4: Continuous execution of the EPOF instruction and the POF instruction is required to go into the RAM back-up state.
- 5: System returns to state A certainly when returning from the RAM back-up mode.

 However, the selected contents (CMCK, CRCK, CYCK instruction execution state) of f(XIN) oscillation circuit is retained.

Fig. 48 State transition

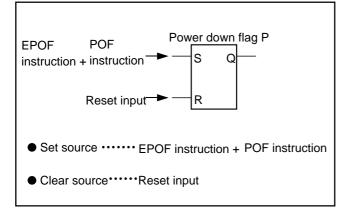


Fig. 49 Set source and clear source of the P flag

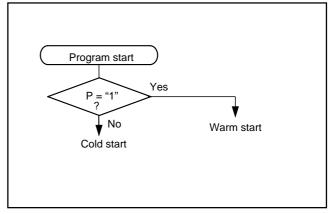


Fig. 50 Start condition identified example using the SNZP instruction

Table 18 Key-on wakeup control register, pull-up control register

Key-on wakeup control register K0		at	reset : 00002	at RAM back-up : state retained	R/W TAK0/TK0A
1/0-	Pins P12 and P13 key-on wakeup	0	Key-on wakeup not	used	
K03 control bit		1	Key-on wakeup use	ed	
1/0-	Pins P10 and P11 key-on wakeup	0	Key-on wakeup not	used	
K02	control bit	1	Key-on wakeup use	ed	
1/04	Pins P02 and P03 key-on wakeup	0	Key-on wakeup not	used	
K01	control bit	1	Key-on wakeup use	ed	
1/00	Pins P0o and P01 key-on wakeup	0	Key-on wakeup not	used	
K0 0	control bit	1	Key-on wakeup use	ed 🌭	
Key-on wakeup control register K1		at	reset : 00002	at RAM back-up : state retained	R/W TAK1/TK1/
1/4 -	Ports P02 and P03 return condition selection		Return by level		
K13	bit	1	Return by edge	70.	
K12	Ports P02 and P03 valid waveform/		Falling waveform/"L	." level	
K12	level selection bit	1	Rising waveform/"H" level		
K11	Ports P01 and P00 return condition selection	0	Return by level	30	
N I I	bit	1	Return by edge		
K10	Ports P01 and P00 valid waveform/	0	Falling waveform/"L	" level	
KIU	level selection bit	1	Rising waveform/"H	" level	
	Key-on wakeup control register K2	at	reset : 00002	at RAM back-up : state retained	R/W TAK2/TK2
K23	INT1 pin return condition selection bit	0	Return by level		
NZS	INT I pili retarri condition selection bit	1	1 Return by edge		
K2 2	INT1 pin key-on wakeup contro bit	0 Key-on wakeup not used		used	
NZ2	int i pili key-oli wakeup colillo bit	1	Key-on wakeup used		
K21	INT0 pin return condition selection bit	0	Return by level		
1141	114 10 piil return condition selection bit	1 Return by edge			
K20 INT0 pin key-on wakeup contro bit		0	Key-on wakeup not	used	
1120	iivio piii key-oii wakeup contio bit	1	Key-on wakeup use	ed	

Note: "R" represents read enabled, and "W" represents write enabled.

Table 19 Key-on wakeup control register, pull-up control register

	Pull-up control register PU0		reset : 00002	at RAM back-up : state retained	R/W TAPU0/ TPU0A	
DLIOs	P03 pin pull-up transistor		Pull-up transistor O	FF		
PU03	control bit	1	Pull-up transistor O	N		
PU02	P02 pin pull-up transistor	0	Pull-up transistor O	FF		
PU02	control bit	1	Pull-up transistor O	N		
DUIG	P01 pin pull-up transistor	0	Pull-up transistor O	FF		
PU01 control bit		1	Pull-up transistor O	N		
DI IO-	P00 pin pull-up transistor		Pull-up transistor O	FF		
PU0 ₀	control bit	1	Pull-up transistor O	or ON		
	Pull-up control register PU1	at	reset : 00002	at RAM back-up : state retained	R/W TAPU1/ TPU1A	
DI IA-	P13 pin pull-up transistor	0	Pull-up transistor OFF			
PU13	control bit	1	Pull-up transistor ON			
DUI	P12 pin pull-up transistor	0	Pull-up transistor OFF			
PU12	control bit	1	Pull-up transistor ON			
DUI4.	P11 pin pull-up transistor		Pull-up transistor OFF			
PU11	control bit	1	Pull-up transistor ON			
DUI4-	P10 pin pull-up transistor	0	Pull-up transistor O	FF		
PU10	control bit	1	Pull-up transistor ON			

Note: "R" represents read enabled, and "W" represents write enabled.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- On-chip oscillator (internal oscillator)
- · Ceramic resonator
- · RC oscillation circuit
- · Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- · Frequency divider
- · Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 51 shows the structure of the clock control circuit.

The 4583 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset. Also, the ceramic resonator, the RC oscillation or quartz-crystal oscillator can be used for the main clock (f(XIN)) of the 4583 Group. The CMCK instruction, CRCK instruction or CYCK instruction is executed to select the ceramic resonator, RC oscillator or quartz-crystal oscillator respectively.

The CMCK, CRCK, and CYCK instructions can be used only to select main clock (f(XIN)). In this time, the start of oscillation and the switch of system clock are not performed.

The oscillation start/stop of main clock f(XIN) is controlled by bit 1 of register MR. The system clock is selected by bit 0 of register MR. The oscillation start/stop of on-chip oscillator is controlled by register RG.

The oscillation circuit by the CMCK, CRCK or CYCK instruction can be selected only at once.

The oscillation circuit corresponding to the first executed one of these instructions is valid.

Execute the main clock (f(XIN)) selection instruction (CMCK, CRCK or CYCK instruction) in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

When the CMCK, CRCK, and CYCK instructions are never executed, main clock (f(XIN)) cannot be used and system can be operated only by on-chip oscillator.

The no operated clock source (f(RING)) or (f(XIN)) cannot be used for the system clock. Also, the clock source (f(RING) or f(XIN)) selected for the system clock cannot be stopped.

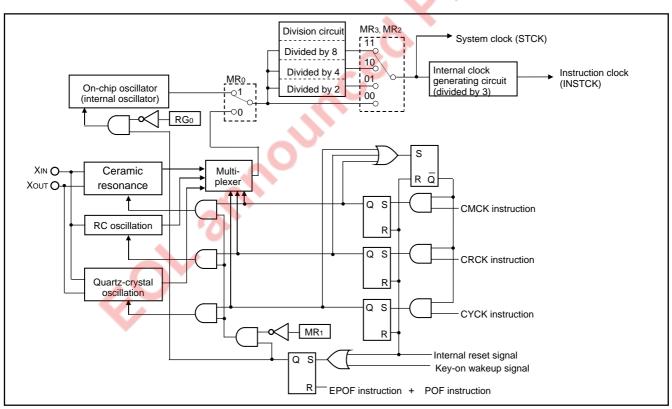


Fig. 51 Clock control circuit structure

oduci

(1) Main clock generating circuit (f(XIN))

The ceramic resonator, RC oscillation or quartz-crystal oscillator can be used for the main clock of this MCU.

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. When the quartz-crystal oscillator is used, execute the CYCK instruction. The oscillation start/stop of main clock f(XIN) is controlled by bit 1 of register MR. The system clock is selected by bit 0 of register MR. The oscillation circuit by the CMCK, CRCK or CYCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these instructions is valid

Execute the CMCK, CRCK or CYCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK, CRCK or CYCK instruction is not executed in program, this MCU operates by the on-chip oscillator.

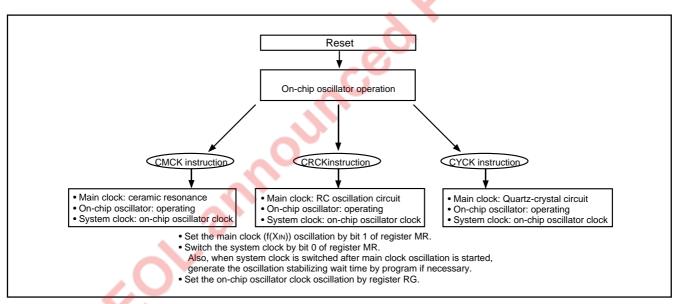


Fig. 52 Switch to ceramic resonance/RC oscillation/quartz-crystal oscillation

(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the main clock (f(XIN)) without using the ceramic resonator, RC oscillator or quartz-crystal oscillation, leave XIN pin and XOUT pin open (Figure 53).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 54).

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 55).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

(5) Quartz-crystal oscillator

When a quartz-crystal oscillator is used as the main clock (f(XIN)), connect this external circuit and a quartz-crystal oscillator to pins XIN and XOUT at the shortest distance. Then, execute the CYCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 56).

(6) External clock

When the external clock signal for the main clock (f(XIN)) is used, connect the clock source to XIN pin and XOUT pin open. In program, after the CMCK instruction is executed, set main clock (f(XIN)) oscillation start to be enabled (MR1=0).

For this product, when RAM back-up mode and main clock (f(XIN)) stop (MR1=1), XIN pin is fixed to "H" in order to avoid the through current by floating of internal logic. The XIN pin is fixed to "H" until main clock (f(XIN)) oscillation starts to be valid (MR1=0) by the CMCK instruction from reset state. Accordingly, when an external clock is used, connect a 1 k Ω or more resistor to XIN pin in series to limit of current by competitive signal.

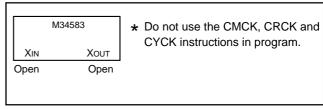


Fig. 53 Handling of XIN and XOUT when operating on-chip oscillator

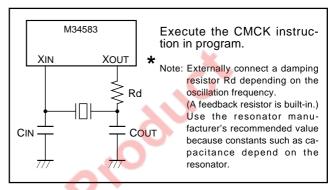


Fig. 54 Ceramic resonator external circuit

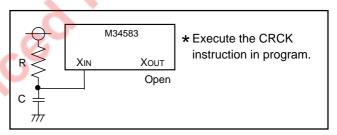


Fig. 55 External RC oscillation circuit

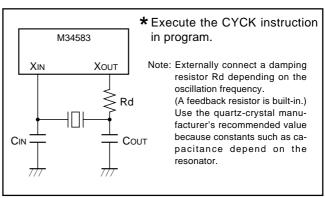


Fig. 56 External quartz-crystal circuit

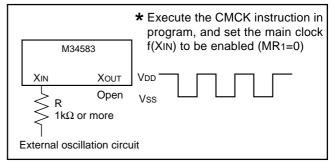


Fig. 57 External clock input circuit

(7) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

(8) Clock control register RG

Register RG controls start/stop of on-chip oscillator. Set the contents of this register through register A with the TRGA instruction.

Table 20 Clock control registers

Table 20 C	nock control registers					D // A /
	Clock control register MR		at	reset : 11112	at RAM back-up : 11112	R/W TAMR/ TMRA
		MRз	MR2		Operation mode	
MR3		0	0	Through mode (free	quency not divided)	
	Operation mode selection bits	0	1	Frequency divided by 2 mode		
MR ₂		1	0	Frequency divided by 4 mode		
		1	1	Frequency divided by 8 mode		
MR1	Main clock f(XIN) oscillation circuit control bit	()	Main clock (f(XIN))	oscillation enabled	
IVIIX	Main clock I(XIN) oscillation circuit control bit	1		Main clock (f(XIN)) oscillation stop		
MR ₀	System clock oscillation source selection bit	0		Main clock (f(XIN))		
IVIIXO	System clock oscillation source selection bit	•	1	On-chip oscillator clock (f(RING))		

Clock control register RG			at reset : 02	at RAM back-up : 02	W TRGA		
RG ₀	On-chip oscillator (f(RING)) control bit	0	On-chip oscillator (f(RING)) oscillation enabled				
KG0		1	On-chip oscillator (f(RING)) oscillation stop				

Note: "R" represents read enabled, and "W" represents write enabled.

ROM ORDERING METHOD

- 1.Mask ROM Order Confirmation Form*
- 2.Mark Specification Form*
- 3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.
- * For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1 μ F) between pins VDD and Vss at the shortest distance.
- equalize its wiring in width and length, and
- use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/ VPP pin as close as possible).

② Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

3 Register initial values 2

The initial value of the following registers are undefined at RAM backup. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

⑤ Multifunction

- The input/output of P30 and P31 can be used even when INT0 and INT1 are selected.
- The input/output of De can be used even when CNTR0 (input) is selected.
- \bullet The input of D6 can be used even when CNTR0 (output) is selected.
- The "H" output of C can be used even when CNTR1 (output) is selected

Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

Stop timer 1, 2, 3 and 4 counting to change its count source.

® Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

Writing to the timer

Stop timer 1, 2, 3 or 4 counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB) to write its data.

[®]Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload regiser R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

10 Timer 4

Avoid a timing when timer 4 underflows to stop timer 4 at the use of PWM output function.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

Timer input/output pin

When the PWM signal is output from C/CNTR1 pin, set the output latch of port C to "0".

[®] Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the RAM back-up state. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up state, and stop the watchdog timer function.
- When the watchdog timer function and RAM back-up function are used at the same time, execute the WRST instruction before system enters into the RAM back-up state and initialize the flag WDF1.

d. Product

⁽⁴⁾ Period measurement circuit

When a period measurement circuit is used, clear bit 0 of register I1 to "0", and set a timer 1 count start synchronous circuit to be "not selected".

Start timer operation immediately after operation of a period measurement circuit is started.

When the edge for measurement is input until timer operation is started from the operation of period measurement circuit is started, the count operation is not executed until the timer operation becomes valid. Accordingly, be careful of count data.

When data is read from timer, stop the timer and clear bit 2 of register W5 to "0" to stop the period measurement circuit, and then execute the data read instruction.

Depending on the state of timer 1, the timer 1 interrupt request flag (T1F) may be set to "1" when the period measurement circuit is stopped by clearing bit 2 of register W5 to "0". In order to avoid the occurrence of an unexpected interrupt, clear the bit 2 of register V1 to "0" (refer to Figure 58①) and then, stop the bit 2 of register W5 to "0" to stop the period measurement circuit.

In addition, execute the SNZT1 instruction to clear the T1F flag after executing at least one instruction (refer to Figure 582).

Also, set the NOP instruction for the case when a skip is performed with the SNZT1 instruction (refer to Figure 583).

While a period measurement circuit is operating, the timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.

When a period measurement circuit is used, select the sufficiently higher-speed frequency than the signal for measurement for the count source of a timer 1.

When the signal for period measurement is D6/CNTR0 pin input, do not select D6/CNTR0 pin input as timer 1 count source.

(The XIN input is recommended as timer 1 count source at the time of period measurement circuit use.)

When the input of P3o/INT0 pin is selected for measurement, set the bit 3 of a register I1 to "1", and set the input of INTO pin to be enabled.

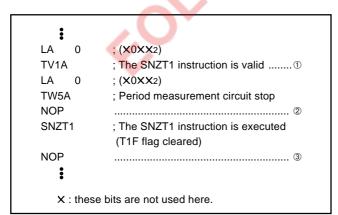


Fig. 58 Period measurement circuit program example

P30/INT0 pin

• Note [1] on bit 3 of register I1

When the input of the INT0 pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the P30/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 59 ①) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 59 ②).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 59 ③).

Fig. 59 External 0 interrupt program example-1

- Note [2] on bit 3 of register I1
 When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INTO pin is disabled, be careful about the following notes.
- When the input of INT0 pin is disabled (register I13 = "0"), set the key-on wakeup function to be invalid (register K20 = "0") before system enters to the RAM back-up mode. (refer to Figure 60¹).

```
LA 0 ; (XXX02)
TK2A ; Input of INT0 key-on wakeup invalid .. ①
DI
EPOF
POF ; RAM back-up

X: these bits are not used here.
```

Fig. 60 External 0 interrupt program example-2

Note on bit 2 of register I1

When the interrupt valid waveform of the P30/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

Depending on the input state of the P30/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 61①) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 612).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 61®).

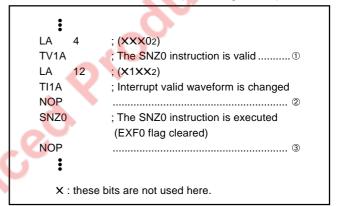


Fig. 61 External 0 interrupt program example-3

[®]P31/INT1 pin

• Note [1] on bit 3 of register I2

When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 62[®]) and then, change the bit 3 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 62²).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 62³).

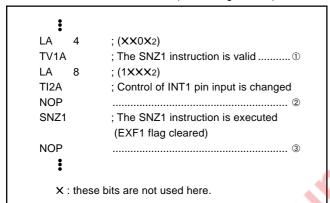


Fig. 62 External 1 interrupt program example-1

- Note [2] on bit 3 of register I2 When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.
- When the input of INT1 pin is disabled (register I23 = "0"), set the key-on wakeup function to be invalid (register K22 = "0") before system enters to the RAM back-up mode. (refer to Figure 63①).

```
LA 0 ; (X0XX2)

TK2A ; Input of INT1 key-on wakeup invalid .. ①

DI

EPOF

POF ; RAM back-up

X: these bits are not used here.
```

Fig. 63 External 1 interrupt program example-2

- Note on bit 2 of register I2
- When the interrupt valid waveform of the P31/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.
- Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 64①) and then, change the bit 2 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 64②).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 64³).

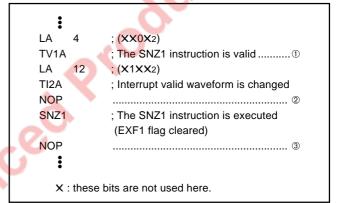


Fig. 64 External 1 interrupt program example-3

⊕ A/D converter-1

- When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."
- Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.
- Clear the bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode.
- The A/D conversion completion flag (ADF) may be set when the
 operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a
 value to the register Q1, and execute the SNZAD instruction to
 clear the ADF flag.

LA 8 ; (X0XX2)
TV2A ; The SNZAD instruction is valid①
LA 0 ; (0XXX2)
TQ1A ; Operation mode of A/D converter is changed from comparator mode to A/D conversion mode.

SNZAD
NOP

X: these bits are not used here.

Fig. 65 A/D converter program example-3

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins (Figure 66).

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 67. In addition, test the application products sufficiently.

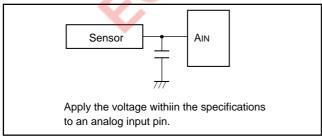


Fig. 66 Analog input external circuit example-1

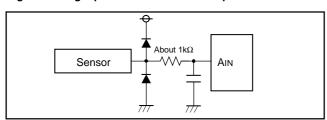


Fig. 67 Analog input external circuit example-2

[®]POF instruction

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the POF instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF instruction continuously.

@Program counter

Make sure that the PC does not specify after the last page of the built-in ROM.

Power-on reset

When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to the value of supply voltage or more must be set to 100 µs or less. If the rising time exceeds 100 µs, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

2 Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 68);

supply voltage does not fall below to VRST-, and its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST- and re-goes up after that.

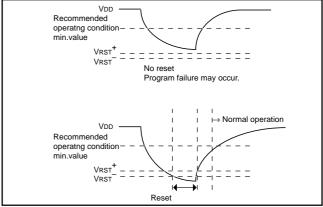


Fig. 68 VDD and VRST

© Clock control

Execute the main clock (f(XIN)) selection instruction (CMCK, CRCK or CYCK instruction) in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the CMCK, CRCK or CYCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these instructions is valid.

The CMCK, CRCK, and CYCK instructions can be used only to select main clock (f(XIN)). In this time, the start of oscillation and the switch of system clock are not performed.

When the CMCK, CRCK, and CYCK instructions are never executed, main clock (f(XIN)) cannot be used and system can be operated only by on-chip oscillator.

The no operated clock source (f(RING)) or (f(XIN)) cannot be used for the system clock. Also, the clock source (f(RING)) or (f(XIN)) selected for the system clock cannot be stopped.

^(a)On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

When considering the oscillation stabilize wait time at the switch of clock, be careful that the variable frequency of the on-chip oscillator clock.

⊚ External clock

When the external clock signal for the main clock (f(XIN)) is used, connect the clock source to XIN pin and XOUT pin open. In program, after the CMCK instruction is executed, set main clock (f(XIN)) oscillation start to be enabled (MR1=0).

For this product, when RAM back-up mode and main clock (f(XIN)) stop (MR1=1), XIN pin is fixed to "H" in order to avoid the through current by floating of internal logic. The XIN pin is fixed to "H" until main clock (f(XIN)) oscillation start to be valid (MR1=0) by the CMCK instruction from reset state. Accordingly, when an external clock is used, connect a 1 k Ω or more resistor to XIN pin in series to limit of current by competitive signal.

© Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

® Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

CONTROL REGISTERS

Interrupt control register V1		at reset : 00002		at RAM back-up : 00002	R/W TAV1/TV1A		
V13	Timer 2 interrupt enable bit	0	Interrupt disabled	Interrupt disabled (SNZT2 instruction is valid)			
V 13	Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid)			
V12	Timer 1 interrupt enable bit	0	Interrupt disabled	(SNZT1 instruction is valid)			
V 12		1	Interrupt enabled (SNZT1 instruction is invalid)			
V11	External 1 interrupt enable bit	0	Interrupt disabled	(SNZ1 instruction is valid)			
V 11	External i interrupt enable bit	1	Interrupt enabled (SNZ1 instruction is invalid)				
V10	External 0 interrupt anable hit	0	Interrupt disabled	(SNZ0 instruction is valid)			
V 10	External 0 interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)			

Interrupt control register V2		at reset : 00002		at RAM back-up : 00002	R/W TAV2/TV2A		
\/O-	Not used	0	This high and the first had a ship in the state of				
V23	Not used	1	This bit has no function, but read/write is enabled.				
A/D interrupt enable hit	A/D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)				
V22	A/D interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid)				
V0.	Timor 4 interrupt anable bit	0	Interrupt disabled	(SNZT4 instruction is valid)			
V21	Timer 4 interrupt enable bit	1	Interrupt enabled (SNZT4 instruction is invalid)				
V20	Timer 3 interrupt enable bit	0	Interrupt disabled (SNZT3 instruction is valid)				
		1	1 Interrupt enabled (SNZT3 instruction is invalid)				

Interrupt control register I1		at	reset : 00002	at RAM back-up : state retained	R/W TAI1/TI1 <i>F</i>	
l13	INT0 pin input control bit (Note 2)	0		INT0 pin input disabled		
	' ' ' ' '	1	INT0 pin input ena	abled		
Interrupt valid waveform for INT0 pin/ return level selection bit (Note 2)	0	Falling waveform/	"L" level ("L" level is recognized with	the SNZI0		
	Interrupt valid waveform for INT0 pin/		instruction)			
	return level selection bit (Note 2)		Rising waveform/"H" level ("H" level is recognized with the SNZIO			
		1	instruction)			
l1 ₁	INT0 pin edge detection circuit control bit	0	One-sided edge detected			
111	in 10 pin eage detection circuit control bit	1	Both edges detect	ted		
I1 0	INT0 pin Timer 1 count start synchronous	0	Timer 1 count star	t synchronous circuit not selected		
110	circuit selection bit	1 Timer 1 count sta		t synchronous circuit selected		

	Interrupt control register I2		reset : 00002	at RAM back-up : state retained	R/W TAI2/TI2A			
123	I23 INT1 pin input control bit (Note 2)		INT1 pin input disa	INT1 pin input disabled				
123	in i pin input control bit (Note 2)	1	INT1 pin input enabled					
	Later was to a line was form for the later with	0	"	L" level ("L" level is recognized with	the SNZI1			
122	Interrupt valid waveform for INT1 pin/		instruction)					
	return level selection bit (Note 2)	1	Rising waveform/"H" level ("H" level is recognized with the SNZI1					
		'	instruction)					
121	INT1 pin edge detection circuit control bit	0	One-sided edge detected					
121	INT I pin eage detection circuit control bit	1	Both edges detected					
120	INT1 pin Timer 3 count start synchronous	0	Timer 3 count start	t synchronous circuit not selected				
120	circuit selection bit	1	Timer 3 count start	t synchronous circuit selected				

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set to "1".

	Clock control register MR		at	reset : 11112	at RAM back-up : 11112	R/W TAMR/		
		MR3	MRa		Operation mode	TMRA		
MRз		0	0	Through mode (free	<u> </u>			
	Operation mode selection bits	0	1	Frequency divided by 2 mode				
MR2		1	0	Frequency divided by 4 mode				
		1	1	Frequency divided I	by 8 mode			
MR1	Main clock f(XIN) oscillation circuit control bit	C)	Main clock (f(XIN)) oscillation enabled				
IVIIX	OSCINATION CITCUIT CONTROL BIL	1		Main clock (f(XIN)) oscillation stop				
MR0	System clock oscillation source selection bit	C)	Main clock (f(XIN))				
IVIIXU	System clock oscillation source selection bit	1	ĺ	On-chip oscillator clock (f(RING))				

Clock control register RG		í	at reset : 02	at RAM back-up : 02	W TRGA
RG ₀	On-chip oscillator (f(RING)) control bit	0	On-chip oscillator (f(RING)) oscillation enabled	
I KG0		1	On-chip oscillator (f(RING)) oscillation stop		

Timer control register PA		at reset : 02		1	at RAM b	pack-up : 02	W TPAA
PA ₀	Prescaler control bit	0	Stop (state initialize	ed)			
PAU		1	Operating		-		

	Timer control register W1			reset : 00002	at RAM back-up : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection bit (Note 2)		0 Timer 1 count auto-stop circuit not selected 1 Timer 1 count auto-stop circuit selected			
W12	Timer 1 control bit	0 Stop (state retained 1 Operating			d)	
W11		W11 0	W10 0	Instruction clock (II	· · · · · · · · · · · · · · · · · · ·	
W10	Timer 1 count source selection bits	1	0	Prescaler output (C XIN input CNTR0 input	JRCLK)	

	Timer control register W2		at reset : 00002		at RAM back-up : state retained	R/W TAW2/TW2A
W23	W22 CNTD0 system to single selection bit)	Timer 1 underflow signal divided by 2 output		
1123	CNTR0 output signal selection bit	_		Timer 2 underflows	signal divided by 2 output	
W22	Timer 2 control bit	0		Stop (state retained)		
****		•		Operating		
1440		W21	W20		Count source	
W21		0	0	System clock (STC	:K)	
	Timer 2 count source selection bits	0	1	Prescaler output (ORCLK)		
W20		1	0	Timer 1 underflow	signal (T1UDF)	
		1	1	PWM signal (PWMOUT)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").

Timer control register W3		at reset : 00002		reset : 00002	at RAM back-up : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection	0		Timer 3 count auto	-stop circuit not selected	
1103	bit (Note 2)		1	Timer 3 count auto	-stop circuit selected	
W32	W/22 Transport of the t)	Stop (state retained)		
VV32	Timer 3 control bit	1		Operating		
		W31	W30		Count source	
W31	Times 2 second second selection bits	0	0	PWM signal (PWMOUT)		
-	Timer 3 count source selection bits (Note 3)	0	1	Prescaler output (C	Prescaler output (ORCLK)	
W30		1	0	Timer 2 underflow signal (T2UDF)		
		1	1	CNTR1 input		

Timer control register W4		at reset : 00002		at RAM back-up : 00002	R/W TAW4/TW4A
\/\/12	W43 CNTR1 pin function selection bit	0	CNTR1 output inva	alid	
VV43		1	CNTR1 output vali	CNTR1 output valid	
W42	W/4a PWM signal	0	PWM signal "H" interval expansion function invalid		
VV42	"H" interval expansion function control bit	1	PWM signal "H" int	terval expansion function valid	
W41	Timor 4 control bit	0	Stop (state retaine	d)	
VV41	Timer 4 control bit	1	Operating	/	
W40	Timer 4 count source selection bit	0	XIN input		
VV40	Timer 4 count source selection bit	1	Prescaler output (0	ORCLK) divided by 2	

Timer control register W5			at reset : 00002		at RAM back-up : state retained	R/W TAW5/TW5A
W53	Not used	(This bit has no fund	ction, but read/write is enabled.	
W52	Period measurement circuit control bit	0		Stop		
)	ı	Operating		
		W51	W50		Count source	
W51	Signal for period measurement selection	0	0	On-chip oscillator (f(RING/16))	
	bits	0	1	CNTR ₀ pin input		
W50		1	0	INT0 pin input		
		1	1	Not available		

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W TAW6/TW6A
W63	W63 CNTR1 pin input count edge selection bit		Falling edge	•	•
*****	CNTRT pin input count edge selection bit	1	Rising edge		
W62	CNTR0 pin input count edge selection bit	0	Falling edge		
VV02		1	Rising edge		
W61	CNTR1 output auto-control circuit	0	CNTR1 output auto-control circuit not selected		
****	selection bit	1	CNTR1 output auto-control circuit selected		
W60	D6/CNTR0 pin function selection bit	0	D6 (I/O) / CNTR0 (input)		
*****	Doy Civi Tvo pin Tunction selection bit	1	CNTR0 (I/O) /D6 ((input)	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").

^{3:} The port C output is invalid when CNTR1 output is selected for the timer 3 count source.

A/D control register Q1		at reset : 00002		at RAM back-up : state retained	R/W TAQ1/TQ1A		
Q13	Q13 A/D operation mode selection bit		A/D conversion mo	de			
QIS	A/D operation mode selection bit	1	Comparator mode	Comparator mode			
Q12	Not used	0	This bit has no function, but read/write is enabled.				
Q 12	Not used	1	This bit has no function, but read/write is enabled.				
Q11	Not used	0	This hit has no fund	ction, but road/write is enabled			
Q I I	Not used	1	This bit has no function, but read/write is enabled.				
Q10	Analog input pin selection bits	0	AIN0				
Q 10		1	AIN1				

A/D control register Q2		at reset : 00002		at RAM back-up : state retained	R/W TAQ2/TQ2A		
Q23	Q23 Not used		This hit has no forestion hot mod/orite is explical				
Q23 Not used	Not used	1	This bit has no function, but read/write is enabled.				
Q22	Not used	0	This his has no function but we down to be each lad				
Q22	Not used	1	This bit has no function, but read/write is enabled.				
Q21	D64/Albia pin function coloration bit	0	P61	40			
QZ1	P61/AIN1 pin function selection bit	1	AIN1				
Q20	DGG/AING pin function coloction hit	0	P60	/ 			
Q20	P60/AIN0 pin function selection bit	1	AIN0				

A/D control register Q3		at reset : 00002		reset : 00002	at RAM back-up : state retained	R/W TAQ3/TQ3A
Q33	Not used		0	This bit has no fund	ction, but read/write is enabled.	
Q32	A/D converter operation clock selection bit	0		Instruction clock (INSTCK) On-chip oscillator (f(RING))		
		Q31	Q30		Division ratio	
Q31		0	0	Frequency divided	by 6	
	A/D converter operation clock division	0	1	Frequency divided	by 12	
Q30	ratio selection bits	1	0	Frequency divided	by 24	
		1	1	Frequency divided	by 48	

Note: "R" represents read enabled, and "W" represents write enabled.

K20

					R/W
Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	TAKO/TKOA
1/0-	Pins P12 and P13 key-on wakeup	0	Key-on wakeup not	used	'
К0з	control bit	1	Key-on wakeup use	ed	
	Pins P10 and P11 key-on wakeup	0	Key-on wakeup not	used	
K02	control bit	1	Key-on wakeup use	ed	
	Pins P02 and P03 key-on wakeup	0	Key-on wakeup not	used	
K01	control bit	1	Key-on wakeup use	ed	
K00	Pins P00 and P01 key-on wakeup	0	Key-on wakeup not	used	
KU0	control bit	1	Key-on wakeup use	ed	
	Key-on wakeup control register K1	ot.	reset: 00002	at BAM back up : state retained	R/W
	Key-on wakeup control register K1		reset: 00002	at RAM back-up : state retained	TAK1/TK1A
K13	Ports P02 and P03 return condition selection	0	Return by level		
K13	bit	1	Return by edge		
K12	Ports P02 and P03 valid waveform/	0	Falling waveform/"L	." level	
K12	level selection bit	1	Rising waveform/"H	l" level	
K11	Ports P01 and P00 return condition selection	0	Return by level		
K11	bit	1	Return by edge	30	
K1 0	Ports P01 and P00 valid waveform/	0	Falling waveform/"L	" level	
K10	level selection bit	1	Rising waveform/"H	" level	
	Key-on wakeup control register K2	at	reset : 00002	at RAM back-up : state retained	R/W TAK2/TK2A
1/0-	INITA alla patana anni dilitara anti-atti	0	Return by level		-1
K23	INT1 pin return condition selection bit	1	Return by edge		
L/Oo	INITA nin have an understand by	0	Key-on wakeup not	used	
K22	INT1 pin key-on wakeup contro bit	1 🐇	Key-on wakeup use	ed	
	INITO pin return condition colories Lit	0	Return by level		
K21	INT0 pin return condition selection bit	1	Return by edge		

0

Key-on wakeup not used

Key-on wakeup used

Note: "R" represents read enabled, and "W" represents write enabled.

INT0 pin key-on wakeup contro bit

PRELIMINARY
Notice: This is not a final specification. Some parametric limits are subject to change.

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	R/W TAPU0/ TPU0A	
DLIOs	P03 pin pull-up transistor	0	Pull-up transistor O	FF		
PU03	control bit	1	Pull-up transistor O	N		
PU02	P02 pin pull-up transistor	0	Pull-up transistor O	FF		
PU02	control bit	1	Pull-up transistor O	N		
DUO	P01 pin pull-up transistor	0	Pull-up transistor O	FF		
PU01	control bit	1 Pull-up transistor ON				
DUO	P0o pin pull-up transistor	0	0 Pull-up transistor OFF			
PU00	control bit	1	Pull-up transistor O	N		
	Pull-up control register PU1		reset : 00002	at RAM back-up : state retained	R/W TAPU1/ TPU1A	
PU13	P13 pin pull-up transistor	0	Pull-up transistor O)FF		
PU13	control bit	1	Pull-up transistor O	N		
DUIA	P12 pin pull-up transistor	0	Pull-up transistor O	FF N		
PU12	control bit	1	Pull-up transistor O	N		
DUIA	P11 pin pull-up transistor	0	Pull-up transistor OFF			
PU11	control bit	1	Pull-up transistor O	N . ·		
DUIA	P10 pin pull-up transistor	0	Pull-up transistor O	FF		
PU10	control bit	1	Pull-up transistor O	N		

Note: "R" represents read enabled, and "W" represents write enabled.

Port output structure control register FR0		at reset : 00002		at RAM back-up : state retained	W TFR0A	
ED0s	Ports P12, P13 output structure selection	0	N-channel open-dra	ain output		
FR03	bit	1	CMOS output			
FR02	Ports P10, P11 output structure selection	0	N-channel open-drain output			
FR02	bit	1	CMOS output			
EDO.	Ports P02, P03 output structure selection	0	N-channel open-dra	ain output		
FR01	bit	1	CMOS output			
FR00	Ports P00, P01 output structure selection	0	N-channel open-dra	ain output		
FR00	bit	1	CMOS output			

Port output structure control register FR1		at	reset : 00002	at RAM back-up : state retained	W TFR1A
504		0	N-channel open-drain	n output	
FR13	Port D3 output structure selection bit	1	CMOS output		
ED4e	Dant Do autout atmost up a alastica hit	0	N-channel open-drain output		
FR12	Port D2 output structure selection bit	1	CMOS output	0	
ED4.	Dark Daras dark at market and a disast list	0	N-channel open-drain output		
FR11	Port D1 output structure selection bit	1	CMOS output		
ED4°	Port Do output structure selection bit	0	N-channel open-drain output		
FR10		1	CMOS output		

Port output structure control register FR2			at reset : 00002 at RAM back-up : state retain		W TFR2A			
FR23	Not used	0	This bit has no fund	ction, but write is enabled.				
		0	N-channel open-drain output					
FR22	Port D6/CNTR0 output structure selection bit	1	CMOS output					
		0		ain output				
FR21	Port D5 output structure selection bit	1	N-channel open-drain output					
		1	CMOS output					
FR20	Port D4 output structure selection bit	0	N-channel open-dra	N-channel open-drain output				
11120	1 of D4 output structure selection bit	1	CMOS output	CMOS output				

8-bit general-purpose register SI	at reset : undefined	at RAM back-up : undefined	R/W					
8-bit general purpose register.								
8-bit data can be transferred between register A and register B with the TABSI and TSIAB instructions.								

Note: "R" represents read enabled, and "W" represents write enabled.

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

INSTRUCTIONS

The 4583 Group has the 149 instructions. Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	PS	Prescaler
В	Register B (4 bits)	T1	Timer 1
DR	Register DR (3 bits)	T2	Timer 2
E	Register E (8 bits)	T3	Timer 3
V1	Interrupt control register V1 (4 bits)	T4	Timer 4
V2	Interrupt control register V2 (4 bits)	T1F	Timer 1 interrupt request flag
11	Interrupt control register I1 (4 bits)	T2F	Timer 2 interrupt request flag
12	Interrupt control register I2 (4 bits)	T3F	Timer 3 interrupt request flag
MR	Clock control register MR (4 bits)	T4F	Timer 4 inte <mark>rrupt re</mark> quest flag
RG	Clock control register RG (1 bit)	WDF1	Watchdog timer flag
PA	Timer control register PA (1 bit)	WEF	Watchdog timer enable flag
W1	Timer control register W1 (4 bits)	INTE	Interrupt enable flag
W2	Timer control register W2 (4 bits)	EXF0	External 0 interrupt request flag
W3	Timer control register W3 (4 bits)	EXF1	External 1 interrupt request flag
W4	Timer control register W4 (4 bits)	P	Power down flag
W5	Timer control register W5 (4 bits)	ADF	A/D conversion completion flag
W6	Timer control register W6 (4 bits)		7.12 Conversion Completion may
Q1	A/D control register Q1 (4 bits)	D	Port D (7 bits)
Q2	A/D control register Q2 (4 bits)	P0	Port P0 (4 bits)
Q3	A/D control register Q3 (4 bits)	P1	Port P1 (4 bits)
PU0	Pull-up control register PU0 (4 bits)	P2	Port P2 (3 bits)
PU1	Pull-up control register PU1 (4 bits)	P3	Port P3 (2 bits)
FR0	Port output format control register FR0 (4 bits)	P6	Port P6 (4 bits)
FR1	Port output format control register FR1 (4 bits)		1 01(1 0 (4 51(0)
FR2	Port output format control register FR2 (4 bits)	x	Hexadecimal variable
K0	Key-on wakeup control register K0 (4 bits)	y y	Hexadecimal variable
K1	Key-on wakeup control register K1 (4 bits)	y Z	Hexadecimal variable Hexadecimal variable
K2	Key-on wakeup control register K2 (4 bits)	p	Hexadecimal variable
SI	General-purpose register SI (8 bits)	n	Hexadecimal constant
X	Register X (4 bits)	i	Hexadecimal constant
Ŷ	Register Y (4 bits)	i	Hexadecimal constant
z	Register Z (2 bits)	л АзА2А1А0	Binary notation of hexadecimal variable A
DP	Data pointer (10 bits)	ASAZATAU	(same for others)
	(It consists of registers X, Y, and Z)		(Same for others)
PC	Program counter (14 bits)	,	Direction of data movement
PCH	High-order 7 bits of program counter	\leftarrow \leftrightarrow	Data exchange between a register and memory
PCL	Low-order 7 bits of program counter	?	Decision of state shown before "?"
SK	Stack register (14 bits X 8)	: ()	Contents of registers and memories
SP	Stack pointer (3 bits)	_	Negate, Flag unchanged after executing instruction
CY	Carry flag	M(DP)	RAM address pointed by the data pointer
RPS	Prescaler reload register (8 bits)	a	Label indicating address as as a4 a3 a2 a1 a0
R1	Timer 1 reload register (8 bits)		Label indicating address as a
R2	Timer 2 reload register (8 bits)	p, a	in page p5 p4 p3 p2 p1 p0
R3	Timer 3 reload register (8 bits)	ا ا	Hex. C + Hex. number x
R4L	Timer 4 reload register (8 bits)	C +	TION. O T TION. HUITIDOT A
R4H	Timer 4 reload register (8 bits)	х	
13411	Timor - rolodu rogistor (o bits)		
1	ctions of the 4583 Group has the skip function to unexecute t		

Note: Some instructions of the 4583 Group has the skip function to unexecute the next described instruction. The 4583 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

Group-	Mnemonic	F INSTRUCTION FUNCT Function	Page		Group-	Manager	Formation:	Deriv
ing			Page		ing	Mnemonic	Function	Page
	TAB	(A) ← (B)	102, 122		_	XAMI j	$(A) \leftarrow \rightarrow (M(DP))$	121, 122
	ТВА	(B) ((A)	112, 122		ısfe		$(X) \leftarrow (X)EXOR(j)$	
	IDA	(B) ← (A)	112, 122		trar		$j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) + 1$	
	TAY	$(A) \leftarrow (Y)$	111, 122		ster		(1) ← (1) + 1	
					regi	тма ј	$(M(DP)) \leftarrow (A)$	114, 122
	TYA	$(Y) \leftarrow (A)$	120, 122		RAM to register transfer		$(X) \leftarrow (X)EXOR(j)$	
	TEAD	(F7 F4) ((P)	112, 122		RA		j = 0 to 15	
<u>.</u>	TEAB	$(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$	112, 122			LA n	(A) ← n	90, 124
Register to register transfer		(23 20) ((1)				LAII	n = 0 to 15	90, 124
r tra	TABE	(B) ← (E7–E4)	104, 122					
jiste		(A) ← (E3–E0)				TABP p	(SP) ← (SP) + 1	104, 124
Je C	TDA $(DR_2-DR_0) \leftarrow (A_2-A_0)$ 112, 122			$(SK(SP)) \leftarrow (PC)$				
er to	TDA	$ (DR2-DR0) \leftarrow (A2-A0) $	112, 122				(PCH) ← p	
gist	TAD	$(A_2-A_0) \leftarrow (DR_2-DR_0)$	105, 122				$(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(DR2) \leftarrow 0$	
R _e	1,715	$(A3) \leftarrow 0$,			X	$(DR_2) \leftarrow 0$ $(DR_1, DR_0) \leftarrow (ROM(PC))_{9,8}$	
							$(B) \leftarrow (ROM(PC))7-4$	
	TAZ	$(A1, A0) \leftarrow (Z1, Z0)$	112, 122				$(A) \leftarrow (ROM(PC))3-0$	
		$(A3, A2) \leftarrow 0$.0		$(PC) \leftarrow (SK(SP))$	
	TAX	$(A) \leftarrow (X)$	111, 122				(SP) ← (SP) − 1	
	IAA	(A) ← (A)				AM	$(A) \leftarrow (A) + (M(DP))$	84, 124
	TASP	(A2−A0) ← (SP2−SP0)	109, 122	09, 122	_	/ ((V)		04, 124
		(A3) ← 0				AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$	84, 124
			91, 122		Arithmetic operation		(CY) ← Carry	
	LXY x, y	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$	91, 122		ber		(4)	04.404
es es		(1) ← y y = 0 to 13			etic o	A n	$(A) \leftarrow (A) + n$ $n = 0 \text{ to } 15$	84, 124
ress	LZ z	$(Z) \leftarrow z z = 0 \text{ to } 3$	91, 122		hme		11 - 0 10 13	
add					Arit	AND	$(A) \leftarrow (A) \text{ AND } (M(DP))$	85, 124
RAM addresses	INY	$(Y) \leftarrow (Y) + 1$	90, 122					
<u>~</u>	DEV		88, 122			OR	$(A) \leftarrow (A) OR (M(DP))$	93, 124
	DEY	$(Y) \leftarrow (Y) - 1$	00,			00	(CV) . 1	06 404
	TAM j	$(A) \leftarrow (M(DP))$	107, 122			SC	(CY) ← 1	96, 124
	,	$(X) \leftarrow (X)EXOR(j)$				RC	(CY) ← 0	94, 124
<u>_</u>		j = 0 to 15						
ansfe			120, 122			SZC	(CY) = 0 ?	100, 124
er tra	XAM j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$	120, 122			0.44	(A) (A)	07.404
giste		$ j\rangle = 0$ to 15				СМА	$(A) \leftarrow (\overline{A})$	87, 124
o re) = 0 to 10				RAR	\rightarrow CY \rightarrow A3A2A1A0 \rightarrow	93, 124
RAM to register transfer	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$	120, 122					,
l ₹		$(X) \leftarrow (X)EXOR(j)$						
		j = 0 to 15						
		$(Y) \leftarrow (Y) - 1$						

Note: p is 0 to 127 for M34583MD/ED.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page		Group- ing	Mnemonic	Function	Page
	SB j	$(Mj(DP)) \leftarrow 1$ j = 0 to 3	95, 124			DI	(INTE) ← 0	88, 128
Bit operation	RB j	(Mj(DP)) ← 0	93, 124			EI	(INTE) ← 1	88, 128
	SZB j	j = 0 to 3 (Mj(DP)) = 0 ? j = 0 to 3	100, 124			SNZ0	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0 V10 = 1: NOP	97, 128
ison ion	SEAM	(A) = (M(DP)) ?	97, 124			SNZ1	V11 = 0: (EXF1) = 1 ? After skipping, (EXF1) ← 0 V11 = 1: NOP	97, 128
Comparison operation	SEA n	(A) = n ? n = 0 to 15	97, 124			SNZI0	I12 = 1 : (INT0) = "H" ? I12 = 0 : (INT0) = "L" ?	98, 128
	B a BL p, a	(PCL) ← a6–a0 (PCH) ← p	85, 126 85, 126		operation	SNZI1	122 = 1 : (INT1) = "H" ? 122 = 0 : (INT1) = "L" ?	98, 128
Branch operation	BLA p	(PCL) ← a6–a0 (PCH) ← p	85, 126		Interrupt operation	TAV1	(A) ← (V1)	109, 128
Bra	DEMP	$(PCL) \leftarrow (DR2-DR0, A3-A0)$	00, 120		O.	TV1A	(V1) ← (A)	118, 128
	ВМ а	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	86, 126)	TAV2	(A) ← (V2)	109, 128
		(PCH) ← 2 (PCL) ← a6–a0		7,		TV2A	(V2) ← (A)	118, 128
Subroutine operation	BML p, a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$	86, 126			TAI1 TI1A	$(A) \leftarrow (I1)$ $(I1) \leftarrow (A)$	105, 128 113, 128
oroutine		(PCH) ← p (PCL) ← a6-a0				TAI2	(A) ← (I2)	106, 128
Sul	BMLA p	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	86, 126			TI2A	(I2) ← (A)	113, 128
		$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$				TPAA	(PA ₀) ← (A ₀)	115, 128
	RTI	(PC) ← (SK(SP))	95, 126			TAW1	(A) ← (W1)	109, 128
		(SP) ← (SP) – 1				TW1A	(W1) ← (A)	118, 128
	RT	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	95, 126		Timer operation	TAW2	(A) ← (W2)	110, 128
eration	RTS	$(PC) \leftarrow (SK(SP))$	95, 126		Timer op	TW2A	(W2) ← (A)	118, 128
Return operation		(SP) ← (SP) – 1			•	TAW3 TW3A	$(A) \leftarrow (W3)$ $(W3) \leftarrow (A)$	110, 128
Ľ.							V -7 · V 7	, .20

Group- ing	Mnemonic	Function	Page	G	roup- ing	Mnemonic	Function	Page
	TAW4	(A) ← (W4)	110, 128			Т4НАВ	(R4H7–R4H4) ← (B) (R4H3–R4H0) ← (A)	102, 130
	TW4A	(W4) ← (A)	119, 128			TR1AB	(R17–R14) ← (B) (R13–R10) ← (A)	117, 130
	TAW5	(A) ← (W5)	110, 130			TR3AB	(R37–R34) ← (B) (R33–R30) ← (A)	117, 130
	TW5A	(W5) ← (A)	119, 130			T4R4L		102, 130
	TAW6	(A) ← (W6)	111, 130				(T47-T44) ← (R4L7-R4L4)	
	TW6A	(W6) ← (A)	119, 130		Timer operation	SNZT1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) \leftarrow 0 V12 = 1: NOP	99, 132
	TABPS	(B) ← (TPS7–TPS4)	104, 130		bel		V 12 = 1. IVOI	
	IADI S	$(A) \leftarrow (TPS3-TPS0)$	104, 130		ero	SNZT2	V13 = 0: (T2F) = 1 ?	99, 132
		(A) ← (11 33–11 30)			Ë	0.12.2	After skipping, $(T2F) \leftarrow 0$	00, .02
	TPSAB	(RPS7–RPS4) ← (B)	115, 130				V13 = 1: NOP	
		(TPS7–TPS4) ← (B)	1.0, .00					
		$(RPS_3-RPS_0) \leftarrow (A)$				SNZT3	V20 = 0: (T3F) = 1 ?	99, 132
		(TPS3−TPS0) ← (A)					After skipping, (T3F) ← 0 V20 = 1: NOP	
	TAB1	(B) ← (T17–T14)	103, 130		0		125	
	INDI	$(A) \leftarrow (T13-T10)$	103, 130	100	V	SNZT4	V21 = 0: (T4F) = 1 ?	99, 132
		(7.5)					After skipping, (T4F) ← 0	
٦	T1AB	(R17–R14) ← (B)	101, 130				V21 = 1: NOP	
ratic		(T17–T14) ← (B)						
l dc	(R13–R10) ← (A)			IAP0	(A) ← (P0)	89, 132		
Timer operation		(T13–T10) ← (A)						
i <u>⊑</u>						OP0A	(P0) ← (A)	91, 132
	TAB2	(B) ← (T27–T24)	103, 130				(1)	00 400
		(A) ← (T23–T20)				IAP1	(A) ← (P1)	89, 132
	T2AB	(R27–R24) ← (B)	101, 130			OP1A	(P1) ← (A)	92, 132
		$(T27-T24) \leftarrow (B)$ $(R23-R20) \leftarrow (A)$				IAP2	$(A_2-A_0) \leftarrow (P_{22}-P_{20}) (A_3) \leftarrow 0$	89, 132
		(T23−T20) ← (A)			ıtion	OP2A	(P22−P20) ← (A2−A0)	92, 132
	TAB3	(B) ← (T37–T34) (A) ← (T33–T30)	103, 130		opera	IAP3	(A) ← (P3)	90, 132
	ТЗАВ	(R37–R34) ← (B)	101, 130		Input/Output operation	ОРЗА	(P3) ← (A)	92, 132
		$(T37-T34) \leftarrow (B)$	131, 100		out/			
		(R33–R30) ← (A)			ᆸ	IAP6	(A) ← (P6)	90, 132
		(T33−T30) ← (A)				0004	(50) (4)	00 400
						OP6A	(P6) ← (A)	92, 132
	TAB4	(B) ← (T47–T44)	103, 130					
		(A) ← (T43–T40)						
	T4AB	(R4L7–R4L4) ← (B)	102, 130					
		(T47–T44) ← (B)						
		(R4L3−R4L0) ← (A)						
		(T43−T40) ← (A)						

Group- ing	Mnemonic	Function	Page		Group- ing	Mnemonic	Function	Page
	CLD	(D) ← 1	86, 132			TABAD	In A/D conversion mode , (B) ← (AD9–AD6)	104, 136
	RD	$(D(Y)) \leftarrow 0$	94, 132				$(A) \leftarrow (AD5-AD2)$	
		(Y) = 0 to 6					In comparator mode,	
							(B) ← (AD7–AD4)	
	SD	(D(Y)) ← 1	96, 132				(A) ← (AD3–AD0)	
		(Y) = 0 to 6				L		
	SZD	(D(Y)) = 0 ?	101 122			TALA	$(A3, A2) \leftarrow (AD1, AD0)$ $(A1, A0) \leftarrow 0$	107, 136
	320	(Y) = 0 to 6	101, 132				$(A1, A0) \leftarrow 0$	
		(1) = 0 10 0				TADAB	(AD7–AD4) ← (B)	105, 136
	RCP	(C) ← 0	94, 132			.,,,,,,	$(AD3-AD0) \leftarrow (A)$.00, .00
	SCP	(C) ← 1	96, 132		_	ADST	(ADF) ← 0	84, 136
					atior		A/D conversion starting	
	TAPU0	(A) ← (PU0)	107, 132		A/D operation			
		(5)(6)			Ωo	SNZAD	V22 = 0: (ADF) = 1 ?	98, 136
⊆	TPU0A	(PU0) ← (A)	115, 132		₹ (After skipping, (ADF) \leftarrow 0 V22 = 1: NOP	
Input/Output operation	TAPU1	(A) ← (PU1)	108, 132		(V22 = 1. NOP	
ber	IAFUI	(A) ← (FUT)	100, 132		0	TAQ1	(A) ← (Q1)	108, 136
ont o	TPU1A	 (PU1) ← (A)	116, 132	1		i/\Q i	(7) (31)	100, 130
) th			113,132			TQ1A	(Q1) ← (A)	116, 136
),tnc	TAK0	(A) ← (K0)	106, 134		TAQ2 (A) ← (C			
트						TAQ2	(A) ← (Q2)	108, 136
	TK0A	(K0) ← (A)	114, 134					
						TQ2A	(Q2) ← (A)	116, 136
	TAK1	(A) ← (K1)	106, 134				(4) (20)	
	TICAA	(124) . (0)	444 404			TAQ3	(A) ← (Q3)	108, 136
	TK1A	(K1) ← (A)	114, 134			TQ3A	(Q3) ← (A)	116, 136
	TAK2	(A) ← (K2)	106, 134			IQSA	$(Q3) \leftarrow (A)$	110, 130
	17 11 12	(7) (12)	100, 101			СМСК	Ceramic resonator selected	87, 134
	TK2A	$(K2) \leftarrow (A)$	114, 134					- , -
						CRCK	RC oscillator selected	87, 134
	TFR0A	(FR0) ← (A)	112, 134		ے			
					Clock operation	CYCK	Quartz-crystal oscillator selected	87, 134
	TFR1A	(FR1) ← (A)	113, 134		ber			
		(555)			쑹	TRGA	$(RG0) \leftarrow (A0)$	117, 134
	TFR2A	(FR2) ← (A)	113, 134		Clo	TAMB	(A) (AAD)	407 404
						TAMR	$(A) \leftarrow (MR)$	107, 134
						TMRA	$ MR) \leftarrow (A)$	115, 134
						I WILVA	(****)	110, 104
1								

INDEX LIST OF INSTRUCTION FUNCTION (continued)

		FINSTRUCTION FUNCT	ION (COL	itinuea)
Group- ing	Mnemonic	Function	Page	
	NOP	(PC) ← (PC) + 1	91, 136	
	POF	Transition to RAM back-up mode	93, 136	
	EPOF	POF instruction valid	89, 136	
	SNZP	(P) = 1 ?	98, 136	
	DWDT	Stop of watchdog timer function enabled	88, 136	
Other operation	RBK	p6 ← 0 when TABP p instruction is executed	94, 136	
Other	SBK	p6 ← 1 when TABP p instruction is executed	96, 136	2400
	WRST	(WDF1) = 1 ? After skipping, (WDF1) ← 0	120, 136	16,
	SVDE	at RAM back-up: Voltage drop detection cicuit valid	100, 136	60
	SRST	System reset occurrence	100, 136	C
	TABSI	$(B) \leftarrow (SI7-SI4) \ \ (A) \leftarrow (SI3-SI0)$	105, 136	
	TSIAB	$(SI7-SI4) \leftarrow (B) (SI3-SI0) \leftarrow (A)$	117, 136	

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

^ n (\dd n	and accumulator)				
Instruction	,	Number of	Number of	Flag CY	Clrin condition
code		words	cycles	Flag C1	Skip condition
code	0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0	1	1	_	Overflow = 0
Operation:	$(A) \leftarrow (A) + n$	Grouping:	Arithmetic	operation	
Operation	n = 0 to 15		: Adds the	value n in	the immediate field to a result in register A.
			-		g CY remains unchanged.
					ction when there is no
			overflow a	s the re <mark>sul</mark>	of operation.
					struction when there is
			overflow a	s the resul	of operation.
ADST (A/D	conversion STart)			0	
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 1 1 1 2 2 9 F ₁₆	words 1	cycles 1	_	
Operation:	$(ADF) \leftarrow 0$	Grouping:	A/D conve		
	Q13 = 0: A/D conversion starting	Description			onversion completion
	Q13 = 1: Comparator operation starting		-		conversion at the A/D
	(Q13 : bit 3 of A/D control register Q1)				3 = 0) or the compara- omparator mode (Q13
			= 1) is star		omparator mode (Q13
			- 1) 10 0101	tou.	
	ccumulator and Memory)		T		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 1 0 ₂ 0 0 A ₁₆	1	1	_	
-					
Operation:	$(A) \leftarrow (A) + (M(DP))$	Grouping:	Arithmetic		f M/DD) to maniptom A
		Description			f M(DP) to register A. egister A. The contents
					ins unchanged.
			0. 00	9 0 1 101110	o unonangou
AMC (Add	accumulator, Memory and Carry)				
Instruction	D9 D0	Number of	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 1 1 ₂ 0 0 B ₁₆	words	-	0/4	
		1	1	0/1	_
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping:	Arithmetic	operation	
	$(CY) \leftarrow Carry$	Description			M(DP) and carry flag
			_		res the result in regis-
			ter A and c	arry flag C	Υ.

Code 0 1 1 a6 a5 a4 a3 a2 a1 a0 2 1 8 +a a	AND (logic	and AND between accumulator and memory)		,		
Code 0 0 0 0 1 1 0 0 2 0 1 8 1 1 1 - <th></th> <th></th> <th>Number of</th> <th>Number of</th> <th>Flog CV</th> <th>Skip condition</th>			Number of	Number of	Flog CV	Skip condition
Second Companies Compan					Flag C1	Skip condition
Description: Takes the AND operation between tents of register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in register A and the cont M(DP), and stores the result in registers D and A in Description: Instruction			1	1	_	_
Lents of register A and the cont M(DP), and stores the result in registriction M(DP), and stores the result in registriction M(DP), and stores the result in registriction Day	Operation:	$(A) \leftarrow (A) \text{ AND } (M(DP))$			•	
Ba (Branch to address a)			Description			
Number of cycles Skip condition Sk					-	
Instruction code	B a (Branc	th to address a)				
Code 0		· · · · · · · · · · · · · · · · · · ·	Number of	Number of	Flag CY	Skip condition
Grouping: Branch operation BL p, a (Branch Long to address a in page p) Note: Specify the branch address within t including this instruction. Instruction code Do Do Number of words Number of cycles Number of cycles Number of cycles Specify the branch address within t including this instruction. Operation: (PCH) ← p (PCL) ← a6 to a0 Do Do Earn of cycles Branch operation Description: Branch out of a page : Branches to a in page p. Note: Pic O		0 1 1 a6 a5 a4 a3 a2 a1 a0 2 1 8 a 16		cycles		•
Description: Branch within a page : Branches to a in the identical page. Specify the branch address within to including this instruction.					_	_
Description: Branch within a page : Branches to a in the identical page.	Operation:	(PCL) ← a6 to a0	Grouping:	Branch op	eration	
Note: Specify the branch address within tincluding this instruction.	•	,		: Branch wit	hin a page	: Branches to address
				a in the ide	entical pag	e.
Skip condition: Description: D			Note:			
Do				including tl	his instruct	ion.
Do						
Do						
Code 0 0 1 1 p4 p3 p2 p1 p0 2 P + p p 16 words cycles Cycles Cycles Cycles Cycles Cycles Cycles Description Branch operation Operation: (PCH) ← p (PCL) ← a6 to a0 Description: Branch operation Description: Branch out of a page: Branches to a in page p. Instruction code Description: Description: Number of words Number of cycles Number of words Skip cond cycles 1 0 p5 p4 0 p3 p2 p1 p0 p16 2 2 - - - Operation: (PCH) ← p (PCL) ← (DR2-DR0, A3-A0) Description: Branch operation Do not not of a page: Branches to (DR2 DR1 DR0 A3 A2 A1 A0)2 specified in page p.	BL p, a (B	ranch Long to address a in page p)				
Description: Description: Branch operation Description: Description: Branch operation Description: Descript	Instruction	D9 D0			Flag CY	Skip condition
Description: PCH ← p (PCL) ← a6 to a0 Ps p4 0 0 p3 p2 p1 p0 2 p p1 p0 p1 p0 p1 p0 p2 p1 p0	code	0 0 1 1 1 p4 p3 p2 p1 p0 0 E p		<u> </u>		
Operation: (PCH) ← p Grouping: Branch operation Description: Branch out of a page: Branches to a in page p. Note: Note: Number of words Number of pis 0 to 127 for M34583MD/ED. Instruction code Description: Description: Branch out of a page: Branches to a in page p. Instruction code Description: Description: Description: Branch operation Operation: (PCH) ← p (PCL) ← (DR2–DR0, A3–A0) Description: Description: Branch out of a page: Branches to (DR2 DR1 DR0 A3 A2 A1 A0)2 speceregisters D and A in page p.			2	2	_	_
			Grouping:	Branch op	eration	
Note: p is 0 to 127 for M34583MD/ED.	Operation:	(PCH) ← p	Description	: Branch out	t of a page	: Branches to address
	-			a in page p	٥.	
			Note:	p is 0 to 12	27 for M34	583MD/ED.
		, () [*]				
	DI A = /D=					
		. , , , , , , ,	No. 1 1	Nicontro	Flor: OV	01.55
1 0 p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16 2 2 2 -					Flag CY	Skip condition
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	coae	0 0 0 0 0 1 0 0 0 0 0 1		-	_	_
Operation:(PCH) \leftarrow p (PCL) \leftarrow (DR2-DR0, A3-A0)Description:Branch operation (DR2 DR1 DR0 A3 A2 A1 A0)2 spectoregisters D and A in page p.						
Operation:(PCH) \leftarrow p (PCL) \leftarrow (DR2-DR0, A3-A0)Description:Branch out of a page: Branches to (DR2 DR1 DR0 A3 A2 A1 A0)2 spectoregisters D and A in page p.		1 U p5 p4 U U p3 p2 p1 p0 2 2 p p 16	Grouping:	Branch op	eration	
$(PCL) \leftarrow (DR2-DR0, A3-A0)$ (DR2 DR1 DR0 A3 A2 A1 A0)2 spectrum registers D and A in page p.	Operation:	(PCH) ← p				: Branches to address
	•			(DR ₂ DR ₁	DR ₀ A ₃ A	2 A1 A0)2 specified by
Note: p is 0 to 127 for M34583MD/ED.				registers D	and A in p	page p.
			Note:	p is 0 to 12	27 for M34	583MD/ED.

BM a (Bran	nch and Mark to address a in page 2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 1 a a	words	cycles		
	0 1 0 40 45 47 45 42 41 45 2 1 4 4 16	1	1	_	_
Operation:	(SP) ← (SP) + 1	Grouping:	Subroutine	call opera	ation
-	$(SK(SP)) \leftarrow (PC)$	Description	: Call the s	ubroutine	in page 2 : Calls the
	(PCH) ← 2		subroutine	at address	s a in page 2.
	(PCL) ← a6–a0	Note:	Subroutine	e extendir	ig from page 2 to an-
			other page	e can also	be called with the BM
			instruction	when it sta	arts on page 2.
			Be careful	not to over	the stack because the
			maximum l	evel of sub	routine nesting is 8.
BML p, a (Branch and Mark Long to address a in page p)			U.	
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 C p	words	cycles		
	0 0 1 1 0 p4 p3 p2 p1 p0 ₂ 0 +p p 16	2	2	_	_
	1 0 p5 a6 a5 a4 a3 a2 a1 a0 2 2 p a a a6				
		Grouping:	Subroutine		
Operation:	$(SP) \leftarrow (SP) + 1$	Description	: Call the su	broutine :	Calls the subroutine at
	$(SK(SP)) \leftarrow (PC)$		address a		
	(PCH) ← p	Note:	•		583MD/ED.
	(PCL) ← a6–a0				the stack because the
			maximum l	evel of sub	routine nesting is 8.
	Branch and Mark Long to address (D) + (A) in page p	<u> </u>	ı	1	
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 0 0 0 0 2 0 3 0 16		cycles		
		2	2	_	_
	1 0 p5 p4 0 0 p3 p2 p1 p0 2 2 p p ₁₆	Grouping:	Subroutine	call opera	ation
Operation:	(SP) ← (SP) + 1				Calls the subroutine at
	$(SK(SP)) \leftarrow (PC)$				Ro A3 A2 A1 A0)2 speci-
	$(PCH) \leftarrow p$		fied by reg	isters D ar	nd A in page p.
	$(PCL) \leftarrow (DR2-DR0, A3-A0)$	Note:	p is 0 to 12	27 for M34	583MD/ED.
			Be careful	not to over	the stack because the
			maximum l	evel of sub	routine nesting is 8.
CLD (CLea	ar port D)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 0 1	words	cycles		
	16	1	1	_	_
Operation:	(D) ← 1	Grouping:	Input/Outp	ut operatio	on
•	,		: Sets (1) to		
			. ()		

CMA (Colv	Iplement of Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 0 0 2 0 1 C	words	cycles		•
	0 0 0 0 1 1 1 0 0 2	1	1	_	-
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic	operation	
		Description	: Stores the	e one's co	mplement for register
			A's conten	ts in regist	er A.
				b.	
				^	~
				.C	
CMCK (Cld	ock select: ceraMic oscillation ClocK)			9"	
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 1 1 0 ₂ 2 9 A ₁₆		cycles		
		1	1	_	_
Operation:	Ceramic oscillation circuit selected	Grouping:	Clock cont	rol operation	nn
- - - - - - - - - -		Description			oscillation circuit for
			main clock		
				, ,	
CRCK (Cld	ock select: Rc oscillation ClocK)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 1 1 ₂ 2 9 B ₁₆	words	cycles		
		1	1	_	-
Operation:	RC oscillation circuit selected	Grouping:	Clock cont	rol operation	nn
operation.	The desimation directly desired				llation circuit for main
			clock f(XIN		
			,	,	
	. () Y				
CYCK (Clo	ock select: crYstal oscillation ClocK)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 1 1 0 1 ₂ 2 9 D ₁₆	words	cycles		
		1	1	_	-
Operation:	Quartz-crystal oscillation circuit selected	Grouping:	Clock cont	rol operation	on
oporanom.	Quartz dryotal occimation official collected				rystal oscillation circuit
			for main cl		,
				, ,-	

DEY (DEc	rement register Y)				
Instruction	D9 Do	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 1 1 2 0 1 7	words	cycles		
		1	1	_	(Y) = 15
Operation:	$(Y) \leftarrow (Y) - 1$	Grouping:	RAM addr	esses	
		Description	: Subtracts	1 from the	contents of register Y.
			As a resu	It of subtr	action, when the con-
			tents of re	gister Y is	15, the next instruction
			is skipped	. When the	contents of register Y
			is not 15, t	the next in	struction is executed.
				. C :	
DI (Disable	e Interrupt)			9	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 4	1	1	_	
Operation:	$(INTE) \leftarrow 0$	Grouping:	Interrupt co	ontrol oper	ation
		Description	: Clears (0)	to interrup	t enable flag INTE, and
			disables th		
		Note:			by executing the DI in-
			struction a	fter execut	ing 1 machine cycle.
DWDT (Did	sable WatchDog Timer)				
Instruction		Number of	Number of	Flor CV	Skip condition
code		words	cycles	Flag CY	Skip condition
coue	1 0 1 0 0 1 1 1 0 0 ₂ 2 9 C ₁₆	1	1	_	_
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper		
	O	Description		_	timer function by the
			DWDT inst		after executing the
			וטאטו insi	truction.	
El (Enable	Interrupt)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag C1	Skip condition
oouc	0 0 0 0 0 0 0 1 0 1 2 0 0 5	1	1	_	_
On a not! a no	(INTE) . A	C			
Operation:	(INTE) ← 1	Grouping:	Interrupt co		enable flag INTE, and
		Description	enables th		
		Note:			by executing the EI in-
					ing 1 machine cycle.
			5 GOLIOIT G	5,,00001	

	- morroonono (mb-2, b. , k. m. b.),				
EPOF (Ena	able POF instruction)				
Instruction	D9 D0 0 0 1 0 1 1 0 1 1 0 5 B	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 1 1 2 0 3 5 16	1	1	_	-
Operation:	POF instruction valid	Grouping:	Other oper	ation	
•		Description	: Makes the	immediate	after POF instruction
			valid by ex	ecuting the	EPOF instruction.
IAP0 (Inpu	t Accumulator from port P0)	•	7/	0	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	(A) ← (P0)	Grouping:	Input/Outp		
		Description	: Transfers t	he input of	port P0 to register A.
	ince				
IAP1 (Inpu	t Accumulator from port P1)	•			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
Code	1 0 0 1 1 0 0 0 0 1 2 2 6 1 16	1	1	-	-
Operation:	(A) ← (P1)	Grouping:	Input/Outp	ut operatio	n
	FO ₁	Description	: Transfers t	he input of	port P1 to register A.
	t Accumulator from port P2)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 1 0 2 2 6 2	1	1	_	_
Operation:	$(A2-A0) \leftarrow (P22-P20)$	Grouping:	Input/Outp	ut operatio	n
ореганоп.	$(A3) \leftarrow 0$				port P2 to register A.

	t Accumu	iaio	1 11011	i poi	LF J	<u>'_</u>										
Instruction	D9						Ţ	D 0					Number of	Number of	Flag CY	Skip condition
code	1 0	0	1 1	0	0	0 1	1	1	2	6	3	16	words	cycles		
													1	1	_	-
Operation:	(A) ← (P3	 3)											Grouping:	Input/Outp	ut operation	n
												Ī	Description	: Transfers t	the input of	port P3 to register A.
															, Č	C .
IAP6 (Inpu	t Accumu	lato	r from	nor	t P6	١										
Instruction	D9		1 11011	<u>, po.</u>		,	-	D 0					Number of	Number of	Flag CY	Skip condition
code		0	1 1	0	0	1 /		0 0	2	6	6	16	words	cycles	l and a	
												16	1	1	_	-
Operation:	(A) ← (P6	3)											Grouping:	Input/Outp	ut operation	n
												İ	Description	: Transfers	the input of	port P6 to register A.
													\mathbf{O}			
												0				
									. 1							
								-								
INY (INcre		ster	Y)				-	00	V	*			Number of	Number of	Flor CV	Skip condition
code	D9	0	0 0	1	0	0			О	4	2		words	cycles	Flag CY	Skip condition
oouc		0	0 0		0	U		1 2	U	1	3	16	1	1	-	(Y) = 0
Operation:	(Y) ← (Y)) + 1			~~								Grouping:	RAM addr	esses	
орогинот.	(') \ (')				0	,										s of register Y. As a re
													•			hen the contents o
														register \	/ is 0, the	e next instruction i
																ontents of register Y i
														not 0, the	next instru	ction is executed.
)													
LA n (Load		umu	ılator)										N. 1 .	N , .	El 001	01: "::
Instruction	D9				1		I	O ₀					Number of words	Number of cycles	Flag CY	Skip condition
code	0 0	0	1 1	1	n	n	n	n 2	0	7	n	16	1	1	_	Continuous
													'	'		description
Operation:	(A) ← n												Grouping:	Arithmetic	operation	
-	n = 0 to	15										- 1	Description			the immediate field to
														register A.		
																tions are continuousl
																l, only the first LA in
												- 1				
																uted and other LA
																uted and other LA d continuously are

1101					
	Load register X and Y with x and y)				
Instruction code	D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 3 X y 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	Continuous description
Operation:	$(X) \leftarrow x \ x = 0 \text{ to } 15$	Grouping:	RAM addr	esses	
	$(Y) \leftarrow y \ y = 0 \text{ to } 15$				the immediate field to
			field to re- tions are c only the fi	gister Y. V ontinuousl irst LXY ir	alue y in the immediate When the LXY instruc- y coded and executed, astruction is executed actions coded continu-
			ously are	skipped.	
17 z (Load	register Z with z)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 1 0 21 20 2 0 4 0 16	1		_	-
Operation:	$(Z) \leftarrow z z = 0 \text{ to } 3$	Grouping:	RAM addre	esses	
		Description	: Loads the	value z in	the immediate field to
	, nce	0	register Z.		
NOP (No 0	DPeration)				
Instruction	D9 D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(PC) ← (PC) + 1	Grouping:	Other ope	ration	
	EOL.	Description			1 to program counter main unchanged.
OP0A (Ou	tput port P0 from Accumulator)				
Instruction	D9 D0 1 0 0 0 0 0 0 2 2 0 0	Number of words	Number of cycles	Flag CY	Skip condition
oouc	1 0 0 0 1 0 0 0 0 0 0 0 0 0 1	1	1	-	-
Operation:	(P0) ← (A)	Grouping: Description	Input/Outp : Outputs th P0.		on Is of register A to port

OP1A (Out	nut no	rt D1	fron	· ^ ^	01100	· · · · ·	·or)					,				
Instruction	D9	ILFI	11011	IAC	Culi	iuiai	.01)	Do					Number of	Number of	Flag CY	Skip condition
code		0	0	1	0	0 (0	1	,] [2	2	1 40	words	cycles	Flag C1	Skip condition
							_		J2 L			16	1	1	_	_
Operation:	(P1) ∢	– (A)											Grouping:	Input/Outp	ut operatio	n
													Description	: Outputs th P1.	ne content	s of register A to port
															Ċ	.
OP2A (Out	tput po	rt P2	fron	n Ac	cum	nulat	or)									
Instruction code	D9	0 0	0	1	0	0 () 1	0)]	2	2	2 16	Number of words	Number of cycles	Flag CY	Skip condition
		l				·			J2 L			10	1	1	_	_
Operation:	(P2) <	– (A)											Grouping:	Input/Outp		
												-0	Description	: Outputs th P2.	ne content	s of register A to port
										4		5				
OP3A (Ou	tput po	ort P3	3 fron	n Ac	cun	nula	tor)			J	•					
Instruction code	D9	0 0	0	1	0	0	0 1	Do		2	2	3 16	Number of words	Number of cycles	Flag CY	Skip condition
					I_	1			J2 L	ļ		16	1	1	-	_
Operation:	(P3) ·	- (A)											Grouping:	Input/Outp		
						O.							Description	P3.	ne content	s of register A to por
OP6A (Out	tput po	rt P6	fron	n Ac	cum	nulat	or)									
Instruction code	D9	0 0		1	0	0 .		Do		2	2		Number of words	Number of cycles	Flag CY	Skip condition
	! !	0 0	0	'	0	0	1 1	0	<u> </u> 2	2	2	616	1	1	-	-
Operation:	(P6) «	– (A)											Grouping: Description	Input/Outp Dutputs the P6.		n s of register A to port

OR (logical	OR between accumulator and memory)				
Instruction code	D9 D0 0 0 0 1 1 0 0 1 2 0 1 9 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 1 1 1 0 0 1 2 0 1 9 16	1	1	_	_
Operation:	$(A) \leftarrow (A) OR (M(DP))$	Grouping:	Arithmetic	operation	
		Description:	Takes the	OR operat	ion between the con-
				-	and the contents of e result in register A.
POF (Powe	er OEf)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 0 2 16	words	cycles	_	
					_
Operation:	Transition to RAM back-up mode	Grouping:	Other oper	ration	
		Description		-	RAM back-up state by
					struction after execut-
		Note:	ing the EP		tion. n is not executed before
		Note.			ction, this instruction is
					instruction.
RAR (Rota	ate Accumulator Right)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 0 1 ₂ 0 1 D ₁₆	words 1	cycles 1	0/1	_
Operation:	→[CY]→[A3A2A1A0] ₁	Grouping:	Arithmetic	operation	
Operation.	701 7 NONZATAU				ontents of register A in-
					of carry flag CY to the
	60/		right.		, 0
RB j (Rese	et Bit)				
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(Mj(DP)) \leftarrow 0$	Grouping:	Bit operati	on	
	j = 0 to 3	Description			nts of bit j (bit specified e immediate field) of

	(D. 144)				
	et BanK flag)		ı		
Instruction code	D9 D0 0 0 1 0 0 0 0 0 0 0 0 4 0 4c	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 0 0 0 0 0 16	1	1	_	_
Operation:	$p6 \leftarrow 0$ when TABP p instruction is executed.	Grouping:	Other oper	ation	
·					area to pages 0 to 63
				-	struction is executed.
					id only for the TABP p
			instruction.		,
				C	
RC (Reset	Carry flag)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1 0 2 0 0 6 16	words	cycles		
		1	1	0	_
Operation:	$(CY) \leftarrow 0$	Grouping:	Arithmetic	operation	
		Description	: Clears (0)	to carry fla	g CY.
	0				
RCP (Rese	et Port C)				_
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 0 1 1 0 0 ₂ 2 8 C ₁₆	words	cycles		
	10	1	1	-	_
Operation:	(C) ← 0	Grouping:	Input/Outp		n
	0	Description	: Clears (0)	to port C.	
PD (Poset	port D specified by register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	Flag C1	Skip condition
code	0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1	1	1	_	
-		·	·		
Operation:	$(D(Y)) \leftarrow 0$	Grouping:	Input/Outp		
	However,	Description		to a bit of p	ort D specified by reg-
	(Y) = 0 to 6		ister Y.		

RT (ReTuri	n from subroutine)				
Instruction code	D9 D0 0 0 1 0 0 0 1 0 0 0 4 4 4 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	2	_	_
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
	$(SP) \leftarrow (SP) - 1$			rom subr	outine to the routine
				C	C
RTI (ReTui	rn from Interrupt)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 0 1 1 0 2 0 4 0 16	1	1	_	_
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope		
	$(SP) \leftarrow (SP) - 1$	Description	: Returns fr	om interr	upt service routine to
			main routir		
	<i>O</i>				f data pointer (X, Y, Z),
					NOP mode status by ption of the LA/LXY in-
					and register B to the
			states just	-	=
RTS (ReTu	urn from subroutine and Skip)	•			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 1 0 0 1 0 1 2 0 4 5	1	2	_	Skip at uncondition
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope		
	(SP) ← (SP) – 1	Description			outine to the routine
	401		called the struction a		, and skips the next in- on.
SB j (Set E	zit\				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 1 1 j j ₂ 0 5 C _{+j} ₁₆	words	cycles	1 .ag 0 .	Chip condition
	0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	_	-
Operation:	$(Mj(DP)) \leftarrow 1$	Grouping:	Bit operation	on	
	j = 0 to 3		: Sets (1) th	e contents	of bit j (bit specified by nediate field) of M(DP).

SBK (Set I	BanK flag)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 0 0 0 0 1 2	words 1	cycles 1	_	
		ļ ,	ļ	_	_
Operation:	$\text{p6} \leftarrow \text{1}$ when TABP p instruction is executed.	Grouping:	Other oper		
		Description		-	rea to pages 64 to 127
					struction is executed.
					id only for the TABP p
			instruction	· 😾	
SC (Set Ca	arry flag)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1 1 1 2 0 0 7	words	cycles		
		1	1	1	-
Operation:	(CY) ← 1	Grouping:	Arithmetic	operation	
		Description	: Sets (1) to	carry flag	CY.
SCP (Set I	·	1	1	T=: 0\(\alpha\)	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 1 1 0 1 ₂ 2 8 D ₁₆	1	1	_	
		•			
Operation:	(C) ← 1	Grouping:	Input/Outp	ut operatio	n
	-0	Description	: Sets (1) to	port C.	
SD (Set no	ort D specified by register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1 0 1 5	words	cycles	l lag 01	Onip condition
	0 0 0 0 0 1 0 1 0 1 2 0 1 5 16	1	1	_	_
	(200)	Grouping:	Input/Outp		<u> </u>
Operation:	$(D(Y)) \leftarrow 1$ (Y) = 0 to 6			•	rt D specified by regis-
	$(\Upsilon) = 0 \text{ to } \Theta$	Description	ter Y.	a bit of po	it D specified by regis-
		1			

	·	•			
SEA n (Sk	ip Equal, Accumulator with immediate data n)				
Instruction	D9 D0 0 0 1 0 0 1 0 1 0 2 5	Number of words	Number of cycles	Flag CY	Skip condition
0000		2	2	_	(A) = n
	0 0 0 1 1 1 1 n n n n ₂ 0 7 n ₁₆	Grouping:	Compariso	n oneratio	n
Operation:	(A) = n ? n = 0 to 15	Description	: Skips the tents of required the immedia	next instr gister A is iate field.	uction when the con- equal to the value n in
				jister A is r	struction when the con- not equal to the value n
SEAM (Sk	ip Equal, Accumulator with Memory)	•		O.	
Instruction	D9 D0 0 0 0 1 0 0 1 1 0 0 2 6 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	(A) = (M(DP))
Operation:	(A) = (M(DP))?	Grouping:	Compariso	n operatio	n
		Description			uction when the con- equal to the contents of
	ance and the second sec	9	Executes t	egister A	struction when the con- is not equal to the
SNZ0 (Ski	p if Non Zero condition of external 0 interrupt reques	l t flag)			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 1 1 0 0 0 2 0 3 8 16	1	1	_	V10 = 0: (EXF0) = 1
Operation:	V10 = 0: (EXF0) = 1 ?	Grouping:	Interrupt of		
	After skipping, (EXF0) ← 0 V10 = 1: SNZ0 = NOP	Description			os the next instruction
	(V10 = 1. SN20 = NOP (V10 : bit 0 of the interrupt control register V1)				rupt request flag EXF0 clears (0) to the EXF0
	() () () () ()				0 flag is "0," executes
			the next in	struction	
				= 1 : This	s instruction is equiva- uction.
SNZ1 (Ski	p if Non Zero condition of external 1 interrupt reques	t flag)	When V10	= 1 : This	
Instruction	p if Non Zero condition of external 1 interrupt reques	t flag) Number of words	When V10	= 1 : This	'
		Number of	When V10 lent to the	= 1 : This	uction.
Instruction	D9 D0	Number of words	When V10 lent to the Number of cycles	= 1 : This NOP instri	Skip condition
Instruction code	D9	Number of words 1 Grouping:	When V10 lent to the Number of cycles 1 Interrupt of When V11 when exter is "1." After	Flag CY Poeration = 0 : Skip rnal 1 inter r skipping, the EXF	Skip condition

	<u>kip if</u> No	n Zero	<u>con</u> dit	1011 01	<u> </u>	onvei	sion	com	pleti	on flag)			
Instruction code	D9					Do			,	Number of words	Number of cycles	Flag CY	Skip condition
oodo	1 0	1 0	0 0	0 1	1	1 2	2	8 7	16	1	1	-	V22 = 0: (ADF) = 1
Operation:	V22 = 0	: (ADF) =	 : 1 ?							Grouping:	A/D conve	rsion oper	ation
- por unioni		ipping, (A		0									os the next instruction
		: SNZAD		Ü						2000 ipiioii			n completion flag ADI
		it 2 of the	_	nt contr	ما بممن	tor \/2	١						, clears (0) to the ADI
	(V Z Z . D	12 01 1110	, interru	pt oonti	or regic	ici vz	,						lag is "0," executes the
											next instru		lag is o, excoutes the
												-	instruction is equiva
											lent to the		
SNZI0 (Ski	p if Non	Zero c	 onditic	on of e	xterna	al 0 In	terri	upt in	put r	in)			
Instruction	D9					D ₀		- 1		Number of	Number of	Flag CY	Skip condition
code	0 0	0 0	1 1	1 () 1	0	0	3 A	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	words	cycles	1.0	
						2			` 16	1	1/	-	I12 = 0 : (INT0) = "L" I12 = 1 : (INT0) = "H"
Operation:	l12 = 0 :	(INT0) =	: "L" ?							Grouping:	Interrupt of		
	l12 = 1 :	(INT0) =	: "H" ?							Description			s the next instruction
	(I12 : bit	2 of the	interrup	t contro	l regist	er I1)							Γ0 pin is "L." Execute
												struction v	when the level of INT
									.V	9	pin is "H."	4 . 01.5	
									1				s the next instruction Γ0 pin is "H." Execute
							-						when the level of INT
											pin is "L."	Struction	when the level of him is
SNZI1 (Ski	p if Non	Zero c	onditic	n of e	xterna	al 1 In	terru	upt in	put p	oin)	pii 10 L.		
Instruction	D9					D ₀				Number of	Number of	Flag CY	Skip condition
code	0 0	0 0	1 1	1 () 1	1 0	0	3 E	3 16	words	cycles		
				8		2			10	1	1	-	I22 = 0 : (INT1) = "L" I22 = 1 : (INT1) = "H"
	I22 = 0 :	(INT1) =	: "L" ?							Grouping:	Interrupt of		
Operation:		(INITA)	: "H" ?	O						Description			s the next instruction
Operation:	I22 = 1 :	(IINIII) =			1	or 12\					when the I	evel of IN	Γ1 pin is "L." Execute:
Operation:		(IIN I I) =	interrup	t contro	ii regisi	CI 12)							
Operation:			interrup	ot contro	i regisi	GI 12)					the next in	struction v	when the level of INT
Operation:			interrup	ot contro	ii regist	GI 12)					the next in pin is "H."		
Operation:			interrup	ot contro	ii regist	GI 12)					the next in pin is "H." When 122	= 1 : Skip	s the next instruction
Operation:			interrup	ot contro	regist	GI 12)					the next in pin is "H." When I22 when the l	= 1 : Skip evel of IN ⁻	os the next instruction Γ1 pin is "H." Execute
Operation:			interrup	ot contro	i regist	GI 12)					the next in pin is "H." When I22 when the l	= 1 : Skip evel of IN ⁻	s the next instruction
SNZP (Skip	(I22 : bit	2 of the)				flag)			the next in pin is "H." When I22 when the lethe next in pin is "L."	= 1 : Skip evel of IN ⁻ struction v	os the next instruction Γ1 pin is "H." Execute when the level of INT
Instruction	(I22 : bit	Zero co	onditio	n of Po	ower	down Do		,		Number of words	the next in pin is "H." When I22 when the lether next in pin is "L."	= 1 : Skip evel of IN ⁻	os the next instruction Γ1 pin is "H." Execute
SNZP (Skip	(I22 : bit	2 of the)	n of Po		down	flag	0 3	16	Number of words	the next in pin is "H." When I22 when the lethe next in pin is "L."	= 1 : Skip evel of IN ⁻ struction v	os the next instruction Γ1 pin is "H." Execute when the level of INT
SNZP (Skip Instruction code	(I22 : bit	Zero co	onditio	n of Po	ower	down Do		,	3 16	words 1	the next in pin is "H." When I22 when the lether next in pin is "L." Number of cycles	= 1 : Skip evel of IN struction v	s the next instruction on the level of INT Skip condition
SNZP (Skip Instruction code	(I22 : bit	Zero co	onditio	n of Po	ower	down Do		,	16	words	the next in pin is "H." When I22 when the lether next in pin is "L." Number of cycles 1 Other oper: Skips the r	= 1 : Skip evel of IN struction v	s the next instruction T1 pin is "H." Execute when the level of INT Skip condition (P) = 1
SNZP (Skip	(I22 : bit	Zero co	onditio	n of Po	ower	down Do		,	16	words 1 Grouping:	the next in pin is "H." When I22 when the letter the next in pin is "L." Number of cycles 1 Other oper : Skips the r	= 1 : Skip evel of IN struction v Flag CY - ation next instruction	s the next instruction T1 pin is "H." Execute when the level of INT Skip condition (P) = 1
SNZP (Skip Instruction code	(I22 : bit	Zero co	onditio	n of Po	ower	down Do		,	3 16	words 1 Grouping:	the next in pin is "H." When I22 when the letter the next in pin is "L." Number of cycles 1 Other oper : Skips the r	= 1 : Skip evel of IN struction v Flag CY - ation next instruction	s the next instruction T1 pin is "H." Execute when the level of INT Skip condition (P) = 1
SNZP (Skip Instruction code	(I22 : bit	Zero co	onditio	n of Po	ower	down Do		,	16	words 1 Grouping:	the next in pin is "H." When I22 when the letter the next in pin is "L." Number of cycles 1 Other oper : Skips the r "1". After skip changed.	= 1 : Skip evel of IN struction v Flag CY ation ext instruction	s the next instruction In pin is "H." Executes when the level of INT Skip condition (P) = 1 Stip the next instruction is "H." Executes when the level of INT Skip condition (P) = 1
SNZP (Skip Instruction code	(I22 : bit	Zero co	onditio	n of Po	ower	down Do		,	16	words 1 Grouping:	the next in pin is "H." When I22 when the letter the next in pin is "L." Number of cycles 1 Other oper : Skips the r "1". After skip changed.	= 1 : Skip evel of IN struction v Flag CY ation ext instruction	s the next instruction T1 pin is "H." Execute when the level of INT Skip condition (P) = 1

ONITE 4 (OI	· · · · · · · · · · · · · · · · · · ·	<i>(</i> 1)			
	kip if Non Zero condition of Timer 1 interrupt request		T.		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 0 0 0 0 0 ₂ 2 8 0 ₁₆	1	1	_	V12 = 0: (T1F) = 1
-					
Operation:	V12 = 0: (T1F) = 1?	Grouping:	Timer oper		
	After skipping, $(T1F) \leftarrow 0$	Description			os the next instruction
	V12 = 1: SNZT1 = NOP				pt request flag T1F is
	(V12 = bit 2 of interrupt control register V1)				clears (0) to the T1F
			_		ag is "0," executes the
			next instru		Marken in a movie a
			lent to the		instruction is equiva-
			lent to the	INOF IIISU	
	kip if Non Zero condition of Timer 2 interrupt request			EI 01/	01: 1:::
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
Couc	1 0 1 0 0 0 0 0 1 2 2 8 1 16	1		_	V13 = 0: (T2F) = 1
Operation:	V13 = 0: (T2F) = 1 ?	Grouping:	Timer oper		
	After skipping, (T2F) ← 0	Description			os the next instruction
	V13 = 1: SNZT2 = NOP				pt request flag T2F is
	(V13 = bit 3 of interrupt control register V1)				clears (0) to the T2F
			next instru		lag is "0," executes the
					s instruction is equiva-
			lent to the		•
			10111 10 1110		
	kip if Non Zero condition of Timer 3 interrupt request		1		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 0 1 0 2 2 8 2 16	1	1	_	V20 = 0: (T3F) = 1
Operation:	V20 = 0: (T3F) = 1 ?	Grouping:	Timer oper		
	After skipping, (T3F) \leftarrow 0 V20 = 1: SNZT3 = NOP	Description			os the next instruction opt request flag T3F is
	(V20 = bit 0 of interrupt control register V2)				clears (0) to the T3F
	(V20 = bit o of interrupt control register V2)				lag is "0," executes the
			next instru		lag to o, oxocatos tito
					instruction is equiva-
			lent to the		•
SN7T4 (SI	kip if Non Zero condition of Timer 4 inerrupt request	lan)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 0 0 1 1 2 8 3	words	cycles	i lag o i	Only containen
	1 0 1 0 0 0 0 1 1 2 2 0 3 16	1	1	_	V21 = 0: (T4F) = 1
Operation:	V21 = 0: (T4F) = 1 ?	Grouping:	Timer ope	ration	
	After skipping, $(T4F) \leftarrow 0$	Description	: When V21	= 0 : Ski	ps the next instruction
	V21 = 1: SNZT4 = NOP				upt request flag T4F is
	(V21 = bit 1 of interrupt control register V2)				clears (0) to the T4F
			flag. Wher	n the T4F f	lag is "0," executes the
			next instru		
					s instruction is equiva-
			lent to the	NOP instr	uction.

		, (
	stem ReSeT)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 0 1 1 2 0 0 1 16	1	1	_	_
Operation:	System reset occurrence	Grouping:	Other oper	ation	
•	•		: System res		
				ď	•
SVDE (Set	Voltage Detector Enable flag)			V	
Instruction	D9 D0 1 0 0 1 0 0 1 1 2 9 3 46	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 1 0 0 1 0 0 1 1 2 2 9 3 16	1	1	_	_
Operation:	At RAM back-up: Voltage drop detection circuit is valid.	Grouping:	Other oper	ation	
•		Description			drop detection circuit
				ack-up mo	de when VDCE pin is
	0		"H".		
SZB i (Skir	o if Zero, Bit)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 0 0 j j 2 0 2 j	words	cycles	J	<u> </u>
		1	1	_	(Mj(DP)) = 0 $j = 0 to 3$
Operation:	(Mj(DP)) = 0?	Grouping:	Bit operation	on	
	j = 0 to 3	Description			uction when the con-
					cified by the value j in
					of M(DP) is "0." truction when the con-
			tents of bit		
				, ,	
SZC (Skip	if Zero, Carry flag)	I.			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 1 1 1 ₂ 0 2 F ₁₆	words	cycles		
	10	1	1	_	(CY) = 0
Operation:	(CY) = 0 ?	Grouping:	Arithmetic	operation	
•	. ,		: Skips the	next instr	uction when the con-
			tents of ca		
				ping, the	CY flag remains un-
			changed.	ha nastin-	truction when the co-
			tents of the		truction when the con-
			.5.110 01 1110	nag k	· ••

WACHINE	: INSTRUCTIONS (INDEX BY ALPHABET)	(continu	uea)			
SZD (Skip	if Zero, port D specified by register Y)					
Instruction	D9 D0 0 0 1 0 0 1 0 0 2 4 4c	Number of words	Number of cycles	Flag CY	Skip condition	
		2	2	_	(D(Y)) = 0 (Y) = 0 to 6	
			L			
Operation:	(D(Y)) = 0 ?	Grouping: Input/Output operation Description: Skips the next instruction when a bit of p				
	(Y) = 0 to 6	Description	D specified	by registe	er Y is "0." Executes the the bit is "1."	
T1AB (Tra	nsfer data to timer 1 and register R1 from Accumula	tor and reg	ister B)	0		
Instruction code	D9 D0 1 1 0 0 0 0 2 3 0 4c	Number of words	Number of cycles	Flag CY	Skip condition	
	16	1	1	_	-	
Operation:	(T17−T14) ← (B)	Grouping:	Timer oper			
	$(R17-R14) \leftarrow (B)$	Description: Transfers the contents of register B to				
	$(T13-T10) \leftarrow (A)$		-		imer 1 and timer 1 re-	
	$(R13-R10) \leftarrow (A)$		_		nsfers the contents of	
			J		order 4 bits of timer 1	
			and timer	reload re	gister R1.	
T2AB (Tra	nsfer data to timer 2 and register R2 from Accumula	tor and reg	ister B)			
Instruction code	D9 D0 1 1 0 0 0 1 2 3 1	Number of words	Number of cycles	Flag CY	Skip condition	
	16	1	1	-	_	
Operation:	(T27−T24) ← (B)	Grouping:	Timer oper			
	$(R27-R24) \leftarrow (B)$	Description			its of register B to the	
	$(T23-T20) \leftarrow (A)$		J		imer 2 and timer 2 rensfers the contents of	
	(R23–R20) ← (A)		_	to the low-	order 4 bits of timer 2	
T3AB (Trai	nsfer data to timer 3 and register R3 from Accumulat	tor and rea	istor R)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	i iag o i	OKIP CONGILION	
	1 0 0 0 1 1 0 0 1 0 2 2 3 2 16	1	1	_	-	
Operation:	(T37–T34) ← (B)	Grouping:	Timer oper	ation		
	(R37–R34) ← (B)	Description			ts of register B to the	
	$(T33\text{-}T30) \leftarrow (A)$		-		imer 3 and timer 3 re-	
	(R33–R30) ← (A)		_	to the low-	nsfers the contents of order 4 bits of timer 3 gister R3.	

T4AB (Trai	nsfer data to timer 4 and register R4L from Accumul	ator and re	gister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 0 1 1 0 0 1 1 2 2 3 3 16	words	cycles			
		1	1	_	_	
Operation:	(T47–T44) ← (B)	Grouping:	Timer oper	ration		
•	$(R4L7-R4L4) \leftarrow (B)$	Description: Transfers the contents of register B to				
	(T43−T40) ← (A)		high-order	4 bits of t	imer 4 and timer 4 re	
	$(R4L3-R4L0) \leftarrow (A)$		load regist	er R4L. Tra	ansfers the contents o	
			register A	to the low-	order 4 bits of timer	
		and timer 4 reload register R4L.				
Τ4ΗΔΒ (Tr	ansfer data to register R4H from Accumulator and r	⊥ eaister R)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	T lag O I	OKIP CONDITION	
code	1 0 0 0 1 1 0 1 <th>1</th> <th></th> <th>_</th> <th></th>	1		_		
Operation:	$(R4H7-R4H4) \leftarrow (B)$	Grouping:	Timer oper			
	$(R4H3-R4H0) \leftarrow (A)$	Description			its of register B to the	
			-		imer 4 and timer 4 re	
			_		ansfers the contents o	
		9	-		order 4 bits of timer	
			and timer 4	4 reload re	gister R4H.	
T4R4L (Tra	ansfer data to timer 4 from register R4L)					
Instruction	D9 Do	Number of	Number of	Flag CY	Skip condition	
code	1 0 1 0 0 1 0 1 1 1 2 2 9 7	words cycles				
	1 0 1 0 0 1 0 1 1 1 2 2 9 7 16	1	1	_	-	
Operation:	(T47–T44) ← (R4L7–R4L4)	Grouping:	Timer oper	ation		
oporació:::	$(T43-T40) \leftarrow (R4L3-R4L0)$				nts of reload register	
	(1.10 1.10) ((1.120 1.120)		R4L to time		-	
TAR (Trans	sfer data to Accumulator from register B)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	i lag o i	Orap condition	
Code	0 0 0 0 0 1 1 1 1 0 ₂ 0 1 E ₁₆	1	1	_		
		•				
Operation:	$(A) \leftarrow (B)$	Grouping:	Register to	register tr	ansfer	
		Description	: Transfers	the conten	ts of register B to reg	
			ister A.			
		1				

TAB1 (Trai	nsfer data to Accumulator and register B from timer	1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 1 1 0 0 0 0 2 2 7 0	words	cycles			
		1	1	_	-	
Operation:	(B) ← (T17–T14)	Grouping:	Timer oper	ation		
	$(A) \leftarrow (T13-T10)$	Description: Transfers the high-order 4 bits (T17–T14)				
			timer 1 to r	-	,	
				-	ler 4 bits (T13-T10) of	
			timer 1 to 1	egister A.		
				C		
TAB2 (Trai	nsfer data to Accumulator and register B from timer	2)		O		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 1 1 0 0 0 1 2 7 1	words	cycles			
	1 0 0 1 1 1 0 0 0 1 2 2 7 1 16	1	1	-	_	
Onenstiens	(D) (TO- TO)	0	T			
Operation:	$(B) \leftarrow (T27-T24)$ $(A) \leftarrow (T23-T20)$	Grouping: Description	Timer oper		der 4 bits (T27-T24) of	
	$(A) \leftarrow (123-120)$	Description	timer 2 to i	-	del 4 bits (127-124) bi	
				-	ler 4 bits (T23-T20) of	
			timer 2 to 1		(, 0.	
				Ü		
TAB3 (Trai	nsfer data to Accumulator and register B from timer	3)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 1 1 0 0 1 0 2 7 2	words	cycles		'	
	16	1	1	_	-	
Operation:	(B) ← (T37–T34)	Grouping:	Timer oper			
	$(A) \leftarrow (T33 - T30)$	Description			der 4 bits (T37–T34) of	
			timer 3 to 1		ler 4 bits (T33-T30) of	
			timer 3 to 1		lei 4 bits (133–130) di	
			timer 5 to 1	egister A.		
TAB4 (Tran	nsfer data to Accumulator and register B from timer	<u> </u> 4)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 1 1 0 0 1 1 2 7 3	words	cycles	liagor	Onip condition	
0000	1 0 0 1 1 1 0 0 1 1 2 2 7 3 16	1	1	_	-	
	(5) (7)					
Operation:	$(B) \leftarrow (T47 - T44)$	Grouping:	Timer oper		4 h:t- /T4- T4.) -f	
	$(A) \leftarrow (T43 - T40)$	Description		_	der 4 bits (T47-T44) of	
			timer 4 to r	-	ler 4 bits (T43-T40) of	
	timer 4 to regis				ici 4 Dito (143-140) OT	
			111101 4 10 1	ogistei A.		

Code 1	TABAD (Tr	ansfer data to Accumulator and register B from regi	ster AD)			
Table Transfer data to Accumulator and register B from register E Description: Transfer data to Accumulator and register B from register E Transfer data to Accumulator and register B from Program memory in page p)			1	Number of	Flag CY	Skip condition
TABP p (Transfer data to Accumulator and register B from register E to register Landler (A) ← (E3-E0) TabP p (Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer S the high-order 4 bits (Page Program Program Program memory in page p) Transfer S the low Program Program Memory in page p) Transfer S the low Program Pr	code	1 0 0 1 1 1 1 0 0 1 2 7 9	words	cycles		
Comparation			1	1	_	_
Comparation	Operation:	In A/D conversion mode (O12 – 0)	Grouping:	A/D conve	sion opera	l ation
Comparation Code Comparation Code	Operation.				-	
Table Caroundary Carounda						, ,,
$(B) \leftarrow (AD7-AD4) \\ (A) \leftarrow (AD3-AD0) \\ (A) \leftarrow (AD3-AD0) \\ (C) = (AD7-AD4) \\ (A) \leftarrow (AD3-AD0) \\ (C) = (AD7-AD4) \\ (C) = (AD7-AD4) \\ (C) = (AD7-AD0) \\ (C) = ($					-	
TABP p (Transfer data to Accumulator and register B from register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer data to Accumulator and register B from Program memory in page p) Table Transfer Decision Transfer S and D in page p) Transfer data to Accumulator and register B from Program memory in page p) Transfer S and D in pag				der 4 bits	(AD5-AD	D ₂) of register AD to
Coloration:				register A.	n the comp	parator mode (Q13 = 1),
TABE (Transfer data to Accumulator and register B from register E) Instruction Code December						·
TABE (Transfer data to Accumulator and register B from register E) Instruction code D9 D0 Number of words Number of words Number of words Number of words Skip condition TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction code D9 D0 Number of words Number of words Number of register to register transfer Description: Transfers the high-order 4 bits (E7-register E to register B, and low-order of register B from Program memory in page p) Number of words Number of words Number of voycles		(Q10. bit 0 017VD CONTOTTOGISTOT Q1)		-		
Number of vocal words Numb				4 bits (AD3	–AD ₀) of re	egister AD to register A.
code □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	TABE (Tra	nsfer data to Accumulator and register B from regist	er E)		V	
TABP p (Transfer data to Accumulator and register B from Program memory in page p) Transfers the high-order 4 bits (E7-E8)	Instruction	D9 D0		A STATE OF THE PARTY OF THE PAR	Flag CY	Skip condition
TABP p (Transfer data to Accumulator and register B from Program memory in page p)	code		words	cycles		
			11	1	_	_
	Operation:			-	-	
		$(A) \leftarrow (E3-E0)$	Description		_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0		of register	E to regist	er A.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TABP p (T	ransfer data to Accumulator and register B from Pro	gram mem	ory in page	p)	
Operation: $(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(DR2) \leftarrow 0$ $(DR1, DR0) \leftarrow (ROM(PC))9, 8$ $(B) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(PC) \leftarrow (SK(SP))$ $(PC) \leftarrow (DR2-DR0, A3-A0)$ $(DR2) \leftarrow 0$ $(DR1, DR0) \leftarrow (ROM(PC))9, 8$ $(B) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$ $(A) \leftarrow (SP) - 1$ $(B) \leftarrow (SP) - 1$ $(CP) \leftarrow (SP) - 1$	Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	code		words	cycles		
$(SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \hline \begin{tabular}{ll} M34583MD/ED. \\ When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \hline \end{tabular}$ $(SM(SP)) \leftarrow (PC) \leftarrow ($		16 The property of the propert	1	3	_	_
$(SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \hline \begin{tabular}{ll} M34583MD/ED. \\ When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \hline \end{tabular}$ $(SM(SP)) \leftarrow (PC) \leftarrow ($						
$(PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \hline \begin{tabular}{ll} \end{tabular} tabular$		(00) (00) 1	One weight	A with ti -		
$(PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \hline \textbf{Instruction} \\ \textbf{code} \\ \hline \begin{tabular}{ll} Pspecular line by the page of stack register is used. } \\ \hline \begin{tabular}{ll} Instruction (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \hline \end{tabular} $ is executed, be careful not to over the stack because 1 stage of stack register is used. } \\ \hline \begin{tabular}{ll} These bits 7 to 0 are the ROM pattern dress (DR2 DR1 DR0 A3 A2 A1 A0)2 sp. by registers A and D in page p. The pages which can be referred as for after the SBK instruction: 0 to 63 after system is released from reset turned from RAM back-up: 0 to 63. } \\ \hline \end{tabular}	Operation:					to register D. hits 7 to /
$(DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1$ $(DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1$ $(DR2, CROM(PC))9, 8 \\ (DR3, DR0) \leftarrow (ROM(PC))9, 8 \\ (DR3$	Operation:	$(SK(SP)) \leftarrow (PC)$ M34583MD/ED.	Description	: Transfers b	ts 9 and 8	
$(DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP)-1 $ stack register is used. The pages which can be referred as fo after the SBK instruction: 64 to 127 after the RBK instruction: 0 to 63 after system is released from reset turned from RAM back-up: 0 to 63 . $TABPS \text{ (Transfer data to Accumulator and register B from PreScaler)}$ $Instruction code $	Operation:	$(SK(SP)) \leftarrow (PC)$ M34583MD/ED. $(PCH) \leftarrow p$ When this instruction is executed, be careful	Description	to register These bits	ts 9 and 8 B and bit 7 to 0 are	s 3 to 0 to register A the ROM pattern in ad
$(B) \leftarrow (ROM(PC))^{7-4}$ $(A) \leftarrow (ROM(PC))^{3-0}$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Operation:	$(SK(SP)) \leftarrow (PC)$ M34583MD/ED. $(PCH) \leftarrow p$ When this instruction is executed, be careful not to over the stack	Description	to register These bits dress (DR2	ts 9 and 8 B and bit 7 to 0 are DR1 DR0	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified
	Operation:	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(DR2) \leftarrow 0$ $(DR1, DR0) \leftarrow (ROM(PC))9, 8$ M34583MD/ED. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.	Description	to register These bits dress (DR2 by registers	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified page p.
	Operation:	$ \begin{array}{l} (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC)) 9, 8 \\ (B) \leftarrow (ROM(PC)) 7-4 \end{array} $	Description	to register These bits dress (DR2 by registers The pages v after the SB	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instructi	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified page p. be referred as follows; on: 64 to 127
	Operation:	$ \begin{array}{l} (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))_9, 8 \\ (B) \leftarrow (ROM(PC))_{7-4} \\ (A) \leftarrow (ROM(PC))_{3-0} \end{array} $ $ \begin{array}{l} M34583MD/ED. \\ When this instruction \\ is executed, be careful \\ not to over the stack \\ because 1 stage of stack register is used. \\ stack register is used. \\ \end{array} $	Description	to register These bits dress (DR2 by registers The pages after the SB after the RE	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instructi	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified n page p. be referred as follows; on: 64 to 127 on: 0 to 63
	Operation:	$ \begin{array}{l} (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \end{array} $	Description	to register These bits dress (DR2 by registers The pages after the RE after syste	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instruction in is relea	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified a page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or re
		$ \begin{array}{l} (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC)) 9, 8 \\ (B) \leftarrow (ROM(PC)) 7-4 \\ (A) \leftarrow (ROM(PC)) 3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \end{array} $	Description	to register These bits dress (DR2 by registers The pages after the RE after syste	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instruction in is relea	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified a page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or re
Operation: (B) \leftarrow (TPS7–TPS4) (A) \leftarrow (TPS3–TPS0) Grouping: Timer operation Description: Transfers the high-order 4 bits (TPS3–TPS4) of prescaler to register B transfers the low-order 4 bits (TPS3–TPS4)	TABPS (Tr	$\begin{array}{l} (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2 - DR0, A3 - A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC)) 9, 8 \\ (B) \leftarrow (ROM(PC)) 7 - 4 \\ (A) \leftarrow (ROM(PC)) 3 - 0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \\ \text{ansfer data to Accumulator and register B from Preserved} \\ \end{array}$	Description Scaler)	to register These bits dress (DR2 by registers The pages after the SB after the RB after syste turned from	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instructi K instructi R AM back	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified a page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or rescup: 0 to 63.
	TABPS (Tr	$ \begin{array}{l} (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC)) 9, 8 \\ (B) \leftarrow (ROM(PC)) 7-4 \\ (A) \leftarrow (ROM(PC)) 3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \\ ansfer\ data\ to\ Accumulator\ and\ register\ B\ from\ Present the stack of the stac$	Description Scaler) Number of	to register These bits dress (DR2 by registers The pages after the SB after the RB after syste turned from	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instructi K instructi R AM back	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified a page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or re
(A) ← (TPS3–TPS0) Description: Transfers the high-order 4 bits (TPS4) of prescaler to register B transfers the low-order 4 bits (TPS3–	TABPS (Tr	$(SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \hline D9 \\ \hline D0 \\ \hline$	Description Scaler) Number of words	to register These bits dress (DR2 by registers The pages after the RE after syste turned from Number of cycles	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instructi K instructi R AM back	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified a page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or rescup: 0 to 63.
(A) ← (TPS3–TPS0) Description: Transfers the high-order 4 bits (TPS4) of prescaler to register B transfers the low-order 4 bits (TPS3–	TABPS (Tr	$(SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \hline D9 \\ \hline D0 \\ \hline$	Description Scaler) Number of words	to register These bits dress (DR2 by registers The pages after the RE after syste turned from Number of cycles	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instructi K instructi R AM back	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified a page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or rescup: 0 to 63.
transfers the low-order 4 bits (TPS3–	TABPS (Tr Instruction code	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(DR2) \leftarrow 0$ $(DR1, DR0) \leftarrow (ROM(PC))_9, 8$ $(B) \leftarrow (ROM(PC))_{7-4}$ $(A) \leftarrow (ROM(PC))_{3-0}$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$ $ansfer \ data \ to \ Accumulator \ and \ register \ B \ from \ Pres$ $D9 \qquad D0$ $1 0 0 1 1 1 0 1 0 1$ $1 0 1 1 0 1 0 1$ $1 0 1 1 0 1 1 0 1$	Description Scaler) Number of words 1	to register these bits dress (DR2 by registers The pages after the RE after syste turned from	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D it which can K instructi m is relea RAM back	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified a page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or rescup: 0 to 63.
· ·	TABPS (Tr Instruction code	$(SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))_9, 8 \\ (B) \leftarrow (ROM(PC))_{7-4} \\ (A) \leftarrow (ROM(PC))_{3-0} \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \\ \text{ansfer data to Accumulator and register B from Present D9} \\ \hline 1 0 0 1 1 1 0 1 0 1 2 2 7 5 \\ B) \leftarrow (TPS7-TPS4) \\ \\ \\ \\ \\ \\ \\ \\ \\$	Description Scaler) Number of words 1 Grouping:	to register these bits dress (DR2 by registers The pages after the SE after the RE after syste turned from Number of cycles 1 Timer open	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D it which can K instructi K instructi m is relea RAM back Flag CY	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified n page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or re k-up: 0 to 63. Skip condition
oi prescaier to register A.	TABPS (Tr Instruction code	$(SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))_9, 8 \\ (B) \leftarrow (ROM(PC))_{7-4} \\ (A) \leftarrow (ROM(PC))_{3-0} \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \\ \text{ansfer data to Accumulator and register B from Present D9} \\ \hline 1 0 0 1 1 1 0 1 0 1 2 2 7 5 \\ B) \leftarrow (TPS7-TPS4) \\ \\ \\ \\ \\ \\ \\ \\ \\$	Description Scaler) Number of words 1 Grouping:	to register These bits dress (DR2 by registers The pages after the RE after syste turned from Number of cycles 1 Timer open Transfers TPS4) of	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instructi K instructi K instructi Flag CY cation the high- prescale	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified n page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or re c-up: 0 to 63. Skip condition - -order 4 bits (TPS7- r to register B, and
	TABPS (Tr Instruction code	$(SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))_9, 8 \\ (B) \leftarrow (ROM(PC))_{7-4} \\ (A) \leftarrow (ROM(PC))_{3-0} \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \\ \text{ansfer data to Accumulator and register B from Present D9} \\ \hline 1 0 0 1 1 1 0 1 0 1 2 2 7 5 \\ B) \leftarrow (TPS7-TPS4) \\ \\ \\ \\ \\ \\ \\ \\ \\$	Description Scaler) Number of words 1 Grouping:	to register These bits dress (DR2 by registers The pages after the RE after syste turned from Number of cycles 1 Timer open Transfers TPS4) of transfers ti	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instructi K instructi M is relea RAM back Flag CY ration the high- prescale ne low-ord	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified n page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or re c-up: 0 to 63. Skip condition - -order 4 bits (TPS7- r to register B, and ler 4 bits (TPS3-TPS0)
	TABPS (Tr Instruction code	$(SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))_9, 8 \\ (B) \leftarrow (ROM(PC))_{7-4} \\ (A) \leftarrow (ROM(PC))_{3-0} \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \\ \text{ansfer data to Accumulator and register B from Present D9} \\ \hline 1 0 0 1 1 1 0 1 0 1 2 2 7 5 \\ B) \leftarrow (TPS7-TPS4) \\ \\ \\ \\ \\ \\ \\ \\ \\$	Description Scaler) Number of words 1 Grouping:	to register These bits dress (DR2 by registers The pages after the RE after syste turned from Number of cycles 1 Timer open Transfers TPS4) of transfers ti	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instructi K instructi M is relea RAM back Flag CY ration the high- prescale ne low-ord	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified n page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or re c-up: 0 to 63. Skip condition - -order 4 bits (TPS7- r to register B, and ler 4 bits (TPS3-TPS0)
	TABPS (Tr Instruction code	$(SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))_9, 8 \\ (B) \leftarrow (ROM(PC))_{7-4} \\ (A) \leftarrow (ROM(PC))_{3-0} \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \\ \text{ansfer data to Accumulator and register B from Present D9} \\ \hline 1 0 0 1 1 1 0 1 0 1 2 2 7 5 \\ B) \leftarrow (TPS7-TPS4) \\ \\ \\ \\ \\ \\ \\ \\ \\$	Description Scaler) Number of words 1 Grouping:	to register These bits dress (DR2 by registers The pages after the RE after syste turned from Number of cycles 1 Timer open Transfers TPS4) of transfers ti	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instructi K instructi M is relea RAM back Flag CY ration the high- prescale ne low-ord	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified n page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or re c-up: 0 to 63. Skip condition - -order 4 bits (TPS7- r to register B, and ler 4 bits (TPS3-TPS0)
	TABPS (Tr Instruction code	$(SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))_9, 8 \\ (B) \leftarrow (ROM(PC))_{7-4} \\ (A) \leftarrow (ROM(PC))_{3-0} \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \\ \\ \text{ansfer data to Accumulator and register B from Present D9} \\ \hline 1 0 0 1 1 1 0 1 0 1 2 2 7 5 \\ B) \leftarrow (TPS7-TPS4) \\ \\ \\ \\ \\ \\ \\ \\ \\$	Description Scaler) Number of words 1 Grouping:	to register These bits dress (DR2 by registers The pages after the RE after syste turned from Number of cycles 1 Timer open Transfers TPS4) of transfers ti	ts 9 and 8 B and bit 7 to 0 are DR1 DR0 A and D ir which can K instructi K instructi M is relea RAM back Flag CY ration the high- prescale ne low-ord	s 3 to 0 to register A the ROM pattern in ad A3 A2 A1 A0)2 specified n page p. be referred as follows; on: 64 to 127 on: 0 to 63 ased from reset or re c-up: 0 to 63. Skip condition - -order 4 bits (TPS7- r to register B, and ler 4 bits (TPS3-TPS0)

TARSI (Tra	ansfer data to Accumulator and register B from regis	ter SI)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 1 1 1 0 0 0 2 2 7 8 16	words	cycles			
		1	1	_	_	
Operation:	(B) ← (SI7–SI4)	Grouping:	Other ope			
	$(A) \leftarrow (S13-S10)$	Description: Transfers the high-order 4 bits (SI7–S register SI to register B, and transfers				
			-	_	-SI0) of register SI to	
			register A.	<u> </u>		
				C.	>	
	sfer data to Accumulator from register D)			O.		
Instruction code	D9 D0 0 0 1 0 1 0 0 0 1 0 5 1 40	Number of words	Number of cycles	Flag CY	Skip condition	
	0 0 0 1 0 1 0 1 0 0 0 1 2	1		-	-	
Operation:	$(A2-A0) \leftarrow (DR2-DR0)$	Grouping:	Register to	register ti	ransfer	
	(A ₃) ← 0	Description			nts of register D to the	
					A0) of register A.	
	_0	Note:			on is executed, "0" is B) of register A.	
				•	,	
TADAD /T	and the second s	nista a D)				
IADAB (I	ransfer data to register AD from Accumulator from re	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 0 1 1 1 0 0 1 2 3 9	words	cycles	r lag o r	OKIP CONTAINON	
	1 0 0 1 1 1 0 0 1 2 2 3 9 16	1	1	_	_	
Operation:	(AD7–AD4) ← (B)	Grouping: Description	A/D conve		ation mode (Q13 = 0), this in-	
	$(AD3-AD0) \leftarrow (A)$	Description	struction is	equivalent	to the NOP instruction.	
				•	node (Q13 = 1), transof register B to the	
	. 0		high-order	4 bits (AD	7-AD4) of comparator	
					ntents of register A to AD3-AD0) of compara-	
		tor register.				
TΔI1 (Tran	sfer data to Accumulator from register I1)		(Q13 = bit 3	3 of A/D co	ontrol register Q1)	
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 0 1 0 0 1 1 2 2 5 3	words	cycles			
		1	1	_	-	
Operation:	(A) ← (I1)	Grouping:	Interrupt of	peration		
		Description			nts of interrupt control	
			register I1	to register	Α.	

	· · · · · · · · · · · · · · · · · · ·				
TAI2 (Tran	sfer data to Accumulator from register I2)				
Instruction code	D9 D0 1 0 0 1 0 1 0 1 0 0 2 5 4 4	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 1 0 1 0 1 0 0 2 2 5 7 16	1	1	_	_
Operation:	(A) ← (I2)	Grouping: Description	Interrupt op : Transfers register I2	the conter	ts of interrupt control A.
				,C	•
TAK0 (Tra	nsfer data to Accumulator from register K0)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	
Operation:	$(A) \leftarrow (K0)$	Grouping:	Input/Outp		
		Description			nts of key-on wakeup
			control reg	ister K0 to	register A.
	σ				
TAK1 (Tra	nsfer data to Accumulator from register K1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 1 0 0 1 2 5 9	words	cycles		
	1 0 0 1 0 1 0 1 1 2 2 0 0 16	1	1	_	-
Operation:	$(A) \leftarrow (K1)$	Grouping:	Input/Outp		
	·O·	Description			nts of key-on wakeup
	6.01		control reg	ister K1 to	register A.
TAK2 (Tra	nsfer data to Accumulator from register K2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 1 0 1 0 2 5 4	words	cycles		<u> </u>
	1 0 0 1 0 1 1 0 1 0 2 2 3 1 16	1	1	_	_
Operation:	$(A) \leftarrow (K2)$	Grouping:	Input/Outp	ut operatio	n
		Description	: Transfers	the conter	nts of key-on wakeup
			control reg	ister K2 to	register A.

TALA /T							
·	sfer data to Accumulator from register LA)		T				
Instruction code	D9 D0 1 0 0 1 0 0 1 0 2 4 9 40	Number of words	Number of cycles	Flag CY	Skip condition		
	16	1	1	_	-		
Operation:	$(A3, A2) \leftarrow (AD1, AD0)$	Grouping:	A/D conve	rsion opera	n operation		
·	$(A_1, A_0) \leftarrow 0$	Description: Transfers the low-order 2 bits (AD1, A register AD to the high-order 2 bits (A of register A. Note: After this instruction is executed,					
			stored to register A.	the low-or	der 2 bits (A1, A0) of		
TAM j (Trar	nsfer data to Accumulator from Memory)						
Instruction code	D9 D0 1 1 0 0 j j j j 2 C j 40	Number of words	Number of cycles	Flag CY	Skip condition		
	16	1	1	_	-		
Operation:	$(A) \leftarrow (M(DP))$	Grouping:	RAM to reg				
	$(X) \leftarrow (X)EXOR(j)$	Description			contents of M(DP) to		
	j = 0 to 15		-		•		
	σ				-		
		register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.					
			Suit in regis	ster A.			
TAMR (Tra	nsfer data to Accumulator from register MR)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 0 1 0 1 0 0 1 0 2 2 5 2	words 1	cycles 1	_	_		
Operation:	(A) ← (MR)	Grouping:	Clock oper	ation			
-	' O'	Description	: Transfers	the conten	ts of clock control reg-		
	60/		ister MR to	register A			
TAPU0 (Tra	ansfer data to Accumulator from register PU0)						
Instruction code	D9 D0 1 0 1 0 1 1 1 2 2 5 7 16	Number of words	Number of cycles	Flag CY	Skip condition		
	16	1	1	_	_		
Operation:	$(A) \leftarrow (PU0)$	Grouping:	Input/Outp	ut operation	on		
		Description	register Pl		ents of pull-up control ter A.		

TAPU1 (Tr	ansfer data to Accumulator from register PU1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 1 1 1 0 ₂ 2 5 E ₁₆	words 1	cycles 1	_	_
Operation:	(A) ← (PU1)	Grouping: Description	Input/Outp : Transfers register PU	the conte	nts of pull-up control
TA O4 /Tro	cofor data to Accompulator from register C4)			70	
Instruction code	D9 D0 1 0 0 1 0 0 0 1 0 0 0 2 2 4 4 1 ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(A) ← (Q1)	Grouping: Description	A/D conve : Transfers ter Q1 to re	the conten	ation is of A/D control regis-
TAQ2 (Trai	nsfer data to Accumulator from register Q2)	1			
Instruction	D9 D0 1 0 0 1 0 0 1 0 1 2 2 4 5 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(A) ← (Q2)	Grouping: Description	A/D conve : Transfers ter Q2 to re	the conten	ation is of A/D control regis-
TAQ3 (Trai	nsfer data to Accumulator from register Q3)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 0 0 1 0 0 1 1 0 2 2 4 6 16	1	1	_	_
Operation:	(A) ← (Q3)	Grouping: Description	A/D conve : Transfers t ter Q3 to re	the conten	ation is of A/D control regis-

		•			
TASP (Tra	nsfer data to Accumulator from Stack Pointer)				
Instruction code	D9 D0 0 0 1 0 1 0 0 0 0 0 5 0 46	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 0 0 0 2	1	1	-	-
Operation:	$(A2-A0) \leftarrow (SP2-SP0)$	Grouping:	Register to	register tr	ansfer
-	$(A3) \leftarrow 0$		_		s of stack pointer (SP)
					s (A2–A0) of register A.
		Note:			n is executed, "0" is
			stored to the	ne bit 3 (As	s) of register A.
				C	
TAV1 (Tran	nsfer data to Accumulator from register V1)	I			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 0 2 0 5 4	words	cycles		·
		1		_	
Operation:	$(A) \leftarrow (V1)$	Grouping:	Interrupt o	peration	
		Description			nts of interrupt control
			register V1	to registe	r A.
	0				
TAV2 (Tran	nsfer data to Accumulator from register V2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 1 2 0 5 5	words	cycles		
		1	1	_	
Operation:	(A) ← (V2)	Grouping:	Interrupt o	-	
	· O*	Description			nts of interrupt control
			register V2	2 to registe	r A.
	()				
TANA/4 /T	and an internal and a second an				
	nsfer data to Accumulator from register W1)		Ni	FI. OX	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 0 1 0 1 1 ₂ 2 4 B ₁₆	1	1	_	
		!	!	_	
Operation:	(A) ← (W1)	Grouping:	Timer oper	ration	
			: Transfers	the conten	ts of timer control reg-
			ister W1 to	register A	

		()			
	nsfer data to Accumulator from register W2)		I		
Instruction code	D9 D0 1 0 0 1 1 0 0 2 4 C 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(A) ← (W2)	Grouping:	Timer oper	ation	
	() (() =)				ts of timer control reg-
			ister W2 to		-
				C	•
TAW3 (Tra	nsfer data to Accumulator from register W3)			9	
Instruction code	D9 D0 1 0 0 1 1 0 1 2 4 D 46	Number of words	Number of cycles	Flag CY	Skip condition
		1		-	
Operation:	$(A) \leftarrow (W3)$	Grouping:	Timer oper		
		Description			ts of timer control reg-
			ister W3 to	register A	•
	G C				
TAW4 (Tra	nsfer data to Accumulator from register W4)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 0 1 1 0 ₂ 2 4 E ₁₆	words 1	cycles 1	_	
Operation:	(A) ← (W4)	Grouping:	Timer oper	ation	
	(4 . ()				s of timer control reg-
		_	ister W4 to		_
	.0				
	() () () () () () () () () ()				
	ansfer data to Accumulator from register W5)	No. 1	Man 1 1	FI. OX	OL:
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 0 1 1 1 1 1 ₂ 2 4 F ₁₆	1	1	-	-
Operation:	(A) ← (W5)	Grouping:	Timer one	ration	
Operation.	(*) (***)	Grouping: Timer operation Description: Transfers the contents of timer contents of timer contents with the contents of timer contents.			

Instruction	insfer data to Accumulator from register W6)						
code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
oode	1 0 0 1 0 1 0 <td>1</td> <td>1</td> <td>-</td> <td>-</td>	1	1	-	-		
Operation:	(A) ← (W6)	Grouping:	Timer ope				
		Description	i: Transfers		ts of timer control reç		
				, C	\		
	sfer data to Accumulator from register X)	1					
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
	16	1		-	-		
Operation:	$(A) \leftarrow (X)$	Grouping:	Register to				
		Description	r: Transfers ister A.	the conten	ts of register X to reg		
			ister A.				
TAY (Trans	sfer data to Accumulator from register Y)						
Instruction code	D9 D0 0 0 1 1 1 1 1 0 0 1 F	Number of words	Number of cycles	Flag CY	Skip condition		
		1	1	-	_		
Operation:	$(A) \leftarrow (Y)$	Grouping: Register to register transfer					
	O	Description	ter A.	he content	s of register Y to regis		
	20/		lei A.				
TAZ (Trans	sfer data to Accumulator from register Z)						
TAZ (Trans	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
Instruction	· · · · · · · · · · · · · · · · · · ·			Flag CY	Skip condition		
Instruction code	D9 D0	words	cycles	_			
Instruction	D9 D0 0 0 0 1 0 1 0 0 1 1 2 0 5 3 16	words 1	cycles 1 Register to Transfers	register tr	ansfer tts of register Z to th		
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description	cycles 1 Register to: Transfers low-order 2	register tr the conter 2 bits (A1, A	ansfer uts of register Z to th		
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	cycles 1 Register to: Transfers low-order 2 After this	o register tr the conter 2 bits (A1, A instructio	ansfer ts of register Z to th		

TBA (Trans	sfer da	ta to	renis	ter R	fron	η Δ.	CUI	nula	tor)						
Instruction	D9	ia io	regis	iei D	11011	170	cui	D ₀	101)			Number of	Number of	Flag CY	Skip condition
code	0 0	0	0	0 0	1	1	1	0,	0	0	E 16	words	cycles	l lag c l	C.up conduction
				0 0		'	_'		2 [L L 16	1	1	-	-
Operation:	(B) ←	(A)										Grouping:	Register to	register tr	ansfer
ороганот.	(2) ((, ,)													s of register A to regis-
													ter B.		
														(0)	<u> </u>
TDA (Trans		ta to	regis	ter D	fron	n Ac	ccur		tor)			1			
Instruction code	D9	0 0	0	1 0	1	0	0	D ₀	0	2	9 16	Number of words	Number of cycles	Flag CY	Skip condition
											16	1	1	_	-
Operation:	(DR2-	DR ₀)	← (A2-	-Ao)								Grouping:	Register to		
												Description			nts of the low-order 3 er A to register D.
					<u> </u>		•			?	(C)				
TEAB (Tra		lata t	o reg	ıster	E fro	om /	Acc		lato	r and	regis		I	- ov	
Instruction code	D9	0 0	0	0 1	1	0	1	D ₀	0	1	A 16	Number of words	Number of cycles	Flag CY	Skip condition
					4					-		1	1	_	_
Operation:	(E7–E				0							Grouping:		o register t	
	(E3–E	0) ← ((A)		·							Description			nts of register B to the
					•								-	•	–E4) of register E, and ter A to the low-order 4
														o) of regist	
TFR0A (Tr	ansfer	data	to re	giste	r FR	0 fro	om /	Accı	ımu	lator))				
Instruction	D9							D ₀				Number of	Number of	Flag CY	Skip condition
code	1 0	0	0	1 0	1	0	0	0 ,	2	2	8 46	words	cycles		·
				. •	ļ ·			;			16	1	1	_	_
Operation:	(FR0)	← (A)										Grouping:	Input/Outp	ut operatio	n
												Description			nts of register A to the control register FR0.

	ansfer data to register FR1 from Accumulator)	1	ı	1	
Instruction code	D9 D0 1 0 1 0 0 1 2 2 9	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(FR1) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n
		Description			its of register A to the
			port output	t structure	control register FR1.
TED2A /Tr	anefor data to register EP2 from Accumulator			7	
	ansfer data to register FR2 from Accumulator)	Ni	At	FI 0)/	Olda a sandida a
Instruction code	D9 D0 1 0 1 0 1 0 1 0 2 2 2 A 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	
Operation:	$(FR2) \leftarrow (A)$	Grouping:	Input/Outp		
		Description			ts of register A to the
	200	O	port output	t structure (control register FR2.
TI1A (Tran	sfer data to register I1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 1 1 2 2 1 7 16	words 1	cycles 1	_	_
Operation:	(I1) ← (A)	Grouping:	Interrupt o	peration	
	0	Description	: Transfers	the content	s of register A to inter
	CO'V		rupt contro	ol register I	1.
TI2A (Tran	sfer data to register I2 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 1 0 0 0 2 2 1 8 16	1	1	_	_
Operation:	(I2) ← (A)	Crouning	Interrupt o	norotion	
Operation:	$(12) \leftarrow (A)$	Grouping: Description	ts of register A to inte 2.		

		•			
	nsfer data to register K0 from Accumulator)	1	I	I =	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 1 0 1 1 ₂ 2 1 B ₁₆	1	1	_	_
Operation:	$(K0) \leftarrow (A)$	Grouping:	Input/Outp	ut operation	ın
operation.					ts of register A to key-
			on wakeup		
				ď	<u> </u>
TK1A (Tra	nsfer data to register K1 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 0 2 2 1 4 16	1	1	_	
Operation:	$(K1) \leftarrow (A)$	Grouping:	Input/Outp		
		Description			ts of register A to key-
			on wakeup	control re	gister K1.
		6			
TK2A (Tra	nsfer data to register K2 from Accumulator)	1			_
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 0 1 2 2 1 5	words	cycles		
		1	1	_	_
Operation:	(K2) ← (A)	Grouping:	Input/Outp	ut operation	n
	'O '	Description	: Transfers	the conten	ts of register A to key-
			on wakeup	control re	gister K2.
	()				
TMA i/Tro	nofor data to Mamory from Accumulator				
I WIA J (11a	nsfer data to Memory from Accumulator) Do Do	Number of	Number of	Flag CY	Skip condition
code		words	cycles	Flag C1	Skip condition
code	1 0 1 0 1 1 j j j j ₂ 2 B j ₁₆	1	1	_	_
Operation:	(M/DD)\	Grouping	PAM to ro	iotor trops	for
Operation:	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$	Grouping: Description	RAM to reg		contents of register A
	i = 0 to 15	2000		-	e OR operation is per-
	•				ster X and the value j
				_	I, and stores the result
			in register	X.	

TMRA (Tra	ınsfer d	ata t	o regis	ter l	MR fr	om /	Accu	ımu	lato	r)						
Instruction	D9						D ₀	, ,				Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0	0	0 0	1	0 1	1	0]2	2	1	6 16	1	1	_	_	
Operation:	(MR) ←	/Δ\										Grouping:	Other ope	ration		
Operation.	(IVIIX) ←	- (A)													s of register A to cloc	
												Description	control reg		s of register A to cloc	
														C	~	
TPAA (Trai	nsfer da	ata to	regis	ter F	A fro	m A	ccun	nula	ator))		1		V		
Instruction code	D9 1 0	1	0 1	0	1 0) 1	D0	,], [2	Α	A 16	Number of words	Number of cycles	Flag CY	Skip condition	
					ļ							1	1	_		
Operation:	(PA₀) ←	– (Ao)										Grouping:	Timer oper			
											0	Description			s of lowermost bit (Ad htrol register PA.	
TDOAD (T		.1	1. D.	0			A				5	:122 5)				
TPSAB (Tr		data	to Pre	-Sca	aler fr	om <i>i</i>	_		llato	or an	a reg	1	Ni. wala a w a f	Flar CV	Older and differen	
Instruction code	D9 1 0	0	0 1	1	0 1	0	D ₀	2	2	3	5 16	Number of words	Number of cycles	Flag CY	Skip condition	
					18							1	1	_	_	
Operation:	(RPS7-	-RPS	4) ← (B)									Grouping: Timer operation				
	(RPS3-	-RPS	$(A) \leftarrow (B)$ $(A) \leftarrow (A)$ $(A) \leftarrow (A)$,	0							Description	high-order reload reg tents of re	4 bits of p ister RPS, gister A to	ts of register B to the rescaler and prescale and transfers the conthe low-order 4 bits caler reload registers.	
TPU0A (Tr	ansfer	data	to regi	ster	PU0	fron	n Ac	cun	nula	tor)						
Instruction	D9	0	0 1	0	1 1	0	D0	,] [2	2	D 10	Number of words	Number of cycles	Flag CY	Skip condition	
			<u> </u>		•			J2 [-	16	1	1	-	-	
Operation:	(PU0)	← (A)										Grouping: Description	Input/Outp : Transfers up control	the conten	ts of register A to pul	

TDII1 A /Tr	ansfer data to register PU1 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	(PU1) ← (A)	Grouping: Description	Input/Outp	the conten	ts of register A to pull-
			. 4	C	<u> </u>
	nsfer data to register Q1 from Accumulator)			O .	
Instruction code	D9 D0 1 0 0 0 0 0 1 0 0 2 2 0 4 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	$(Q1) \leftarrow (A)$	Grouping:	A/D conve		
	0	Description	: Transfers to control reg		ts of register A to A/D
	nsfer data to register Q2 from Accumulator)	1		= 0\/	
Instruction code	D9	Number of words	Number of cycles	Flag CY	Skip condition
			ı	_	
Operation:	(Q2) ← (A)	Grouping: Description	A/D convel: Transfers to control reg	the conten	ttion ts of register A to A/D
	nsfer data to register Q3 from Accumulator)	I No. 1	No. 1	FI. OX	01.5
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 0 0 1 1 1 0 2 2 0 6 16	1	1	_	_
Operation:	(Q3) ← (A)	Grouping: Description	A/D conve : Transfers control reg	the conten	tion ts of register A to A/D

TD44D /T	The state of the s		··· ,		
	ransfer data to register R1 from Accumulator and reg		I	T	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 1 1 1 1 1 1 ₂ 2 3 F ₁₆	1	1	-	_
Operation:	(R17–R14) ← (B)	Grouping:	Timer oper	ration	
ороганот.	$(R13-R10) \leftarrow (A)$				nts of register B to the
		2000piioi.			7–R14) of reload regis-
			-		ents of register A to the
					B-R10) of reload regis-
			ter R1.	1 1	.,
				C.	
TR3AB (Tr	ransfer data to register R3 from Accumulator and reg	nister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 1 0 1 1 ₀ 2 3 B ₄₆	words	cycles		
	1 0 0 0 1 1 1 0 1 1 2 2 3 1 16	1	1	_	_
	(Da. Da.) (D)	- 0	_		
Operation:	$(R37-R34) \leftarrow (B)$	Grouping:	Timer oper		to of noninten D to the
	$(R33-R30) \leftarrow (A)$	Description			nts of register B to the 7-R34) of reload regis-
			-		ents of register A to the
					R30) of reload regis-
			ter R3.	1 5110 (1100	rico) or roloda rogio
			101 1101		
TRGA (Tra	insfer data to register RG from Accumulator)	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 1 0 0 1 2 2 0 9	words	cycles		
	10	1	1	_	_
Operation:	$(RG_0) \leftarrow (A_0)$	Grouping:	Clock cont	rol operation	on
•	·O		: Transfers t	he content	s of register A to regis-
			ter RG.		
	()				
TOLAR (T	() () () () ()	1 5)			
<u> </u>	ansfer data to register SI from Accumulator and regi	· · ·	Ni mali a ii a f	Flat: OV	Oldin and Birth
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 1 1 0 0 0 2 2 3 8 16	1	1		
		'	'	_	_
Operation:	$(SI7-SI4) \leftarrow (B)$	Grouping:	Other ope	ration	
•	$(SI3-SI0) \leftarrow (A)$				nts of register B to the
			high-orde	r 4 bits (S	I7-SI4) of register SI,
			and transf	ers the co	ntents of register A to
			the low-ord	der 4 bits (SI3-SI0) of register SI.

TV1A (Tra	nsfer data to register V1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 1 ₂ 0 3 F ₁₆	words 1	cycles 1	_	
Operation:	$(V1) \leftarrow (A)$	Grouping:	Interrupt o	•	
		Description			ts of register A to inte
			rupt contro	or register v	.
			-		
	nsfer data to register V2 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 1 1 1 0 ₂ 0 3 E ₁₆	1	1	_	-
Operation:	(V2) ← (A)	Grouping:	Interrupt o	peration	
-		Description	: Transfers t	the conten	ts of register A to inte
	ince		rupt contro	J	
	insfer data to register W1 from Accumulator)	I		- ov	
Instruction code	D9 D0 1 0 0 0 0 1 1 1 0 2 2 0 E 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 0 1 1 1 0 2 2 0 1 16	1	1	_	_
Operation:	$(W1) \leftarrow (A)$	Grouping:	Timer oper	ration	
	FO/-0	Description	: Transfers t control reg		ts of register A to time
	nsfer data to register W2 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 1 1 1 ₂ 2 0 F ₁₆	1	1	_	-
Operation:	(W2) ← (A)	Grouping:	Timer ope	ration	
				the conten	ts of register A to tim

	,				
TW3A (Tra	ansfer data to register W3 from Accumulator)				
Instruction	D9 D0 1 0 0 0 0 1 0 0 0 0 2 1 0 1 0 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 0 1 0 0 0 0 2 2 1 0 16	1	1	_	-
Operation:	(W3) ← (A)	Grouping:	Timer ope	ration	
				the conten	ts of register A to timer
				C	.
TW4A (Tra	ansfer data to register W4 from Accumulator)			0	
Instruction code	D9 D0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1	1	1	_	-
Operation:	$(W4) \leftarrow (A)$	Grouping:	Timer ope	ration	
		Description	n: Transfers control reg		ts of register A to timer
	and the same of th				
TW5A (Tra	Insfer data to register W5 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 0 1 0 2 2 1 2 16	words 1	cycles 1	_	<u> </u>
Operation:	(W5) ← (A)	Grouping:	Timer oper	ation	
Operation.	$(W3) \leftarrow (A)$				s of register A to timer
	60/	Description	control reg		3 of Togister A to timer
TW6A (Tra	ansfer data to register W6 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 0 0 1 1 2 2 1 3 16	1	1	_	_
Operation:	(W6) ← (A)	Grouping: Description	Timer ope n: Transfers control reg	the conten	ts of register A to timer

I IA (II all	sfer data to register Y from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 1 1 0 0 ₂ 0 0 C ₁₆	words	cycles		
	10	1	1	_	_
Operation:	$(Y) \leftarrow (A)$	Grouping:	Register to	register t	ransfer
-					ts of register A to regis-
			ter Y.	*	
				10	
	atchdog timer ReSeT)	1			
Instruction code	D9 D0 1 0 1 0 0 0 0 0 0 2 A 0 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	(WDF1) = 1
Operation:	(WDF1) = 1 ?	Grouping:	Other ope		
	After skipping, (WDF1) \leftarrow 0	Description			uction when watchdog
			_		." After skipping, clears J. When the WDF1 flag
		76	, ,	_	next instruction. Also,
					timer function when ex-
					nstruction immediately
			after the D		
XAM j (eXd	change Accumulator and Memory data)				
Instruction	D9 Do	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 1 0 1 j j j ₂ 2 D ₁₆	1	1	_	_
Operation:	$(A) \longleftrightarrow (M(DP))$	Grouping:	RAM to re	gister trans	sfer
	$(X) \leftarrow (X)EXOR(j)$	Description	: After exch	nanging th	ne contents of M(DP)
	j = 0 to 15				egister A, an exclusive
					ormed between regis-
					in the immediate field,
			and stores	trie resuit	in register X.
XAMD j (e)	Xchange Accumulator and Memory data and Decre	ment regist	er Y and sk	(ip)	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 1 1 1 1 j j j j ₂ 2 F j ₁₆	1	1	-	(Y) = 15
Operation:	$(A) \longleftrightarrow (M(DP))$	Grouping:	RAM to reg	gister trans	sfer
орегинот.	$(X) \leftarrow (X) \in (X) \in (X) \in (X)$	Description	: After exch	ianging th	e contents of M(DP) egister A, an exclusive
	j = 0 to 15		OR operat	ion is perf	ormed between regis-
	$(Y) \leftarrow (Y) - 1$		ter X and t	he value j	in the immediate field,
	,				in register X. contents of register Y.
			As a resul	t of subtra	action, when the con-
		1	tents of reg		15, the next instruction
			is skinned	When the	contents of register Y

XAMI j (eX	change A	ccumu	lator	and I	Memo	ry da	ata aı	nd In	creme	ent register	Y and skip)	
Instruction	D9					Do				Number of words	Number of cycles	Flag CY	Skip condition
code	1 0	1 1	1 0	j	j j	j	2 2	Е	j 16	1	1	_	(Y) = 0
Operation:	$(A) \longleftrightarrow (I)$ $(X) \longleftrightarrow (X)$ $j = 0 \text{ to } 15$ $(Y) \longleftrightarrow (Y)$	EXOR(j)								Grouping: Description	with the co OR operat ter X and t and stores Adds 1 to t sult of ac register Y skipped. w	nanging the nanging the result the result the content dition, when the content	
									C	, P	,00		
	<	O		3									

MACHINE INSTRUCTIONS (INDEX BY TYPES)

Parameter Type of instructions TAB	
TBA 0 0 0 0 0 0 1 1 1 1 0 0 0 0 E 1 1 1 (B) \leftarrow (A) TAY 0 0 0 0 0 0 1 1 1 1 0 0 0 0 E 1 1 1 (A) \leftarrow (Y) TYA 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 C 1 1 (Y) \leftarrow (A) TEAB 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 (E7-E4) \leftarrow (B) (E3-E0) \leftarrow (A) TABE 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 2 A 1 1 (B) \leftarrow (E7-E4) (A) \leftarrow (E3-E0) TAB	ction
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
TAZ 0 0 0 1 0 1 0 0 1 1 0 0 5 3 1 1 1 $(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$ TAX 0 0 0 1 0 1 0 0 0 0 0 0 5 2 1 1 $(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_2, A_2) \leftarrow 0$ TASP 0 0 0 1 0 1 0 0 0 0 0 0 5 0 1 1 $(A_2 - A_0) \leftarrow (S_2 - S_0)$ $(A_3) \leftarrow 0$ LXY x, y 1 1 x3 x2 x1 x0 y3 y2 y1 y0 3 x y 1 1 $(X_1) \leftarrow X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_2 \times X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_1 \times X_1 \times X_1 \times X_2 \times X_1	
TAZ 0 0 0 1 0 1 0 0 1 1 0 0 5 3 1 1 1 $(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$ TAX 0 0 0 1 0 1 0 0 0 0 0 0 5 2 1 1 $(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_2, A_2) \leftarrow 0$ TASP 0 0 0 1 0 1 0 0 0 0 0 0 5 0 1 1 $(A_2 - A_0) \leftarrow (S_2 - S_0)$ $(A_3) \leftarrow 0$ LXY x, y 1 1 x3 x2 x1 x0 y3 y2 y1 y0 3 x y 1 1 $(X_1) \leftarrow X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_2 \times X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_1 \times X_1 \times X_1 \times X_2 \times X_1	
TAZ 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 5 3 1 1 1 $(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$ TAX 0 0 0 1 0 1 0 0 0 1 0 0 5 2 1 1 $(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_2, A_2) \leftarrow 0$ TASP 0 0 0 1 0 1 0 0 0 0 0 0 5 0 1 1 $(A_2 - A_0) \leftarrow (S_2 - S_0)$ $(A_3) \leftarrow 0$ LXY x, y 1 1 x3 x2 x1 x0 y3 y2 y1 y0 3 x y 1 1 $(X_1) \leftarrow X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_1 \times X_1 \times X_2 \times X_1	
TAZ 0 0 0 1 0 1 0 0 1 1 0 0 5 3 1 1 1 $(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$ TAX 0 0 0 1 0 1 0 0 0 0 0 0 5 2 1 1 $(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_2, A_2) \leftarrow 0$ TASP 0 0 0 1 0 1 0 0 0 0 0 0 5 0 1 1 $(A_2 - A_0) \leftarrow (S_2 - S_0)$ $(A_3) \leftarrow 0$ LXY x, y 1 1 x3 x2 x1 x0 y3 y2 y1 y0 3 x y 1 1 $(X_1) \leftarrow X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_2 \times X_1 \times X_2 \times X_1 \times X_1 \times X_2 \times X_1 \times X_1 \times X_1 \times X_1 \times X_2 \times X_1	
TAX 0 0 0 1 0 1 0 0 1 0 0 5 2 1 1 (A3, A2) \leftarrow 0 TASP 0 0 0 1 0 1 0 0 0 0 0 0 5 0 1 1 (A2-A0) \leftarrow (SP2-SP0) (A3) \leftarrow 0 LXY x, y 1 1 x3 x2 x1 x0 y3 y2 y1 y0 3 x y 1 1 (X) \leftarrow x x = 0 to 15 (Y) \leftarrow y y = 0 to 15 By a liny 0 0 0 0 0 1 0 0 1 1 0 0 1 3 1 1 (Y) \leftarrow (Y) $+$ 1	
TASP 0 0 0 1 0 1 0 0 0 0 0 1 1 1 $(A_2-A_0) \leftarrow (SP_2-SP_0)$ $(A_3) \leftarrow 0$ $(A_3) \leftarrow $	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
TAM j 1 0 1 1 0 0 j j j 2 C j 1 1 $(A) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
TMA j	

Skip condition	Carry flag CY	Datailed description
_	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
_	_	Transfers the contents of register Y to register A.
_	_	Transfers the contents of register A to register Y.
-	-	Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
-	-	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits (E3–E0) of register E to register A.
_	_	Transfers the contents of the low-order 3 bits (A2-A0) of register A to register D.
-	-	Transfers the contents of register D to the low-order 3 bits (A2-A0) of register A.
-	-	Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A.
_	_	Transfers the contents of register X to register A.
_	-	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.
Continuous description	_	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	-	Loads the value z in the immediate field to register Z.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
_		After transferring the contents of $M(DP)$ to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
-	_	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

	INE INS				1113	(11	10		В .		176	_3)	10	,011	tiiiu	euj	
Parameter						Ir	stru	ction	cod	le					er of ds	ər of əs	- ·
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otati	cimal on	Number of words	Number of cycles	Function
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1		(A) ← n n = 0 to 15
	ТАВР р	0	0	1	0	p 5	p4	рз	p2	p1	p0	0	8 +p		1		$ \begin{array}{l} (SP) \leftarrow (SP) + 1 \\ (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \ (Note) \\ (PCL) \leftarrow (DR2 - DR0, A3 - A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7 - 4 \\ (A) \leftarrow (ROM(PC))3 - 0 \\ (SK(SP)) \leftarrow (PC) \\ (SP) \leftarrow (SP) - 1 \end{array} $
	AM	0	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
peration	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithmetic operation	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1		(A) ← (A) + n n = 0 to 15
	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	(A) ← (A) AND (M(DP))
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) \text{ OR } (M(DP))$
	sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	SZC	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY A3A2A1A0
	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	$(Mj(DP)) \leftarrow 1$ j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1		(Mj(DP)) ← 0 j = 0 to 3
Bit o	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	0	1	0	0 n	1 n	0 n	1 n	0 0	2		2		(A) = n ? n = 0 to 15
) to 127 for M3																

Note: p is 0 to 127 for M34583MD/ED.

	<u> </u>	
Skip condition	Carry flag CY	Datailed description
Continuous description	-	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	-	Transfers bits 9 and 8 to register D, bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in ad-dress (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. The pages which can be referred as follows; after the SBK instruction: 64 to 127 after the RBK instruction: 0 to 63 after system is released from reset or returned from RAM back-up: 0 to 63.
-	-	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
_	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	-	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	1	Sets (1) to carry flag CY.
_	0	Clears (0) to carry flag CY.
(CY) = 0	_	Skips the next instruction when the contents of carry flag CY is "0."
_	_	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	2	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
_	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

MACHINE INSTRUCTIONS (continued)

										<u>′</u>									
Parameter						Ir	stru	ction	cod	le					er of	er of	Function		
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hex	kad nota	ecimal ation	Number o	Number of cycles	Function		
	Ва	0	1	1	a6	a 5	a 4	a 3	a2	a1	a 0	1		a a	1	1	(PCL) ← a6–a0		
ration	BL p, a	0	0	1	1	1	p4	рз	p2	р1	po	0	E +	p p	2		(PCH) ← p (Note) (PCL) ← a6–a0		
Branch operation		1	0	p 5	a 6	a 5	a 4	аз	a2	a 1	a ₀	2	р +	a a			*		
Brar	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2		(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)		
		1	0	p 5	p4	0	0	рз	p2	р1	po	2	р	p			(1 OL) (ONE DIO, NO NO)		
	ВМ а	0	1	0	a 6	a 5	a4	a 3	a2	a1	a 0	1	а	а	1		$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a6-a0$		
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	р1	po	0		; р	2		$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$		
outine o		1	0	p 5	a 6	a 5	a 4	аз	a2	a1	a 0	2		a a			(PCL) ← a6–a0		
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0	2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC)		
		1	0	p 5	p4	0	0	рз	p2	p1	po	2	р	р			$(PCH) \leftarrow p \text{ (Note)}$ $(PCL) \leftarrow (DR_2-DR_0,A_3-A_0)$		
	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	(PC) ← (SK(SP)) (SP) ← (SP) – 1		
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	(PC) ← (SK(SP)) (SP) ← (SP) – 1		
Return	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1		

Note: p is 0 to 127 for M34583MD/ED.

Skip condition	Carry flag CY	Datailed description
-	-	Branch within a page: Branches to address a in the identical page.
-	-	Branch out of a page : Branches to address a in page p.
-	_	Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
-		Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-		Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.
-		Returns from subroutine to the routine called the subroutine.
Skip at uncondition	7	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

\	INE INS				143						1	_3)	- (1	-011		<u> </u>	
Parameter	Mnemonic					ın	istru	ction	cod	e					umber of words	ber of	Function
Type of instructions	Willemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otati	cimal on	Number words	Number o	
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) ← 0 V10 = 1: SNZ0 = NOP
	SNZ1	0	0	0	0	1	1	1	0	0	1	0	3	9	1	1	V11 = 0: (EXF1) = 1 ? After skipping, (EXF1) ← 0 V11 = 1: SNZ1 = NOP
	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	Α	1	1	l12 = 1 : (INT0) = "H" ?
ation															4	0	I12 = 0 : (INT0) = "L" ?
ot opera	SNZI1	0	0	0	0	1	1	1	0	1	1	0	3	В	1	1	I22 = 1 : (INT1) = "H" ?
Interrupt operation														2			I22 = 0 : (INT1) = "L" ?
	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	(A) ← (V1)
	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	(A) ← (V2)
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	E	1	1	(V2) ← (A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	$(A) \leftarrow (I1)$
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	(I1) ← (A)
	TAI2	1	0	0	1	0	1	0	1	0	0	2	5	4	1	1	$(A) \leftarrow (I2)$
	TI2A	1	0	0	0	0	1	1	0	0	0	2	1	8	1	1	(I2) ← (A)
	TPAA	1	0	1	0	1	0	1	0	1	0	2	Α	Α	1	1	(PA0) ← (A0)
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	(A) ← (W1)
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Ε	1	1	(W1) ← (A)
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
eratic	TAW3	1	0	0	1	0	0	1	1	0	1	2	4	D	1	1	(A) ← (W3)
Timer operation	TW3A	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	(W3) ← (A)
Time	TAW4	1	0	0	1	0	0	1	1	1	0	2	4	Е	1	1	$(A) \leftarrow (W4)$
	TW4A	1	0	0	0	0	1	0	0	0	1	2	1	1	1	1	(W4) ← (A)

Skip condition	Carry flag CY	Datailed description
_	_	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	_	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	_	When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
V11 = 0: (EXF1) = 1	_	When V11 = 0 : Skips the next instruction when external 1 interrupt request flag EXF1 is "1." After skipping, clears (0) to the EXF1 flag. When the EXF1 flag is "0," executes the next instruction. When V11 = 1 : This instruction is equivalent to the NOP instruction. (V11: bit 1 of interrupt control register V1)
(INT0) = "H" However, I12 = 1	-	When I12 = 1 : Skips the next instruction when the level of INT0 pin is "H." (I12: bit 2 of interrupt control register I1)
(INT0) = "L" However, I12 = 0	_	When I12 = 0: Skips the next instruction when the level of INT0 pin is "L."
(INT1) = "H" However, I22 = 1	_	When I22 = 1: Skips the next instruction when the level of INT1 pin is "H." (I22: bit 2 of interrupt control register I2)
(INT1) = "L" However, I22 = 0	_	When I22 = 0 : Skips the next instruction when the level of INT1 pin is "L."
_	_	Transfers the contents of interrupt control register V1 to register A.
_	_	Transfers the contents of register A to interrupt control register V1.
_	_	Transfers the contents of interrupt control register V2 to register A.
_	_	Transfers the contents of register A to interrupt control register V2.
_	_	Transfers the contents of interrupt control register I1 to register A.
_	_	Transfers the contents of register A to interrupt control register I1.
_	_	Transfers the contents of interrupt control register I2 to register A.
_	-/	Transfers the contents of register A to interrupt control register I2.
-	-	Transfers the contents of register A to timer control register PA.
-	(-/	Transfers the contents of timer control register W1 to register A.
_	_	Transfers the contents of register A to timer control register W1.
_	_	Transfers the contents of timer control register W2 to register A.
_	_	Transfers the contents of register A to timer control register W2.
_	_	Transfers the contents of timer control register W3 to register A.
_	_	Transfers the contents of register A to timer control register W3.
_	_	Transfers the contents of timer control register W4 to register A.
_	_	Transfers the contents of register A to timer control register W4.
		I .

Parameter			Instruction code											r of s	r of		
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade	cimal	Number of words	Number of cycles	Function
	TAW5	1	0	0	1	0	0	1	1	1	1	2	4	F	1	1	(A) ← (W5)
	TW5A	1	0	0	0	0	1	0	0	1	0	2	1	2	1	1	(W5) ← (A)
	TAW6	1	0	0	1	0	1	0	0	0	0	2	5	0	1	1	(A) ← (W6)
	TW6A	1	0	0	0	0	1	0	0	1	1	2	1	3	1	1	(W6) ← (A)
	TABPS	1	0	0	1	1	1	0	1	0	1	2	7	5	1	1	$ \begin{array}{l} (B) \leftarrow (TPS7\text{-}TPS4) \\ (A) \leftarrow (TPS3\text{-}TPS0) \end{array} $
	TPSAB	1	0	0	0	1	1	0	1	0	1	2	3	5	1	1	$ \begin{array}{l} (RPS7\text{-}RPS4) \leftarrow (B) \\ (TPS7\text{-}TPS4) \leftarrow (B) \\ (RPS3\text{-}RPS0) \leftarrow (A) \\ (TPS3\text{-}TPS0) \leftarrow (A) \end{array} $
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1		(B) ← (T17–T14) (A) ← (T13–T10)
	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	0	1	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$
	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	(B) ← (T27–T24) (A) ← (T23–T20)
eration	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(R27-R24) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R23-R20) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$
Timer operation	TAB3	1	0	0	1	1	1	0	0	1	0	2	7	2	1	1	(B) ← (T37–T34) (A) ← (T33–T30)
-	ТЗАВ	1	0	0	0	2	1	0	0	1	0	2	3	2	1	1	$(R37-R34) \leftarrow (B)$ $(T37-T34) \leftarrow (B)$ $(R33-R30) \leftarrow (A)$ $(T33-T30) \leftarrow (A)$
	TAB4	1	0	0	1	1	1	0	0	1	1	2	7	3	1	1	(B) ← (T47–T44) (A) ← (T43–T40)
	T4AB	1	0	0	0	1	1	0	0	1	1	2	3	3	1	1	$(R4L7-R4L4) \leftarrow (B)$ $(T47-T44) \leftarrow (B)$ $(R4L3-R4L0) \leftarrow (A)$ $(T43-T40) \leftarrow (A)$
	Т4НАВ	1	0	0	0	1	1	0	1	1	1	2	3	7	1	1	$(R4H7-R4H4) \leftarrow (B)$ $(R4H3-R4H0) \leftarrow (A)$
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	$(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$
	TR3AB	1	0	0	0	1	1	1	0	1	1	2	3	В	1	1	(R37-R34) ← (B) (R33-R30) ← (A)
	T4R4L	1	0	1	0	0	1	0	1	1	1	2	9	7	1	1	(T47−T40) ← (R4L7−R4L0)

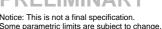
		_
Skip condition	Carry flag CY	Datailed description
_	_	Transfers the contents of timer control register W5 to register A.
_	_	Transfers the contents of register A to timer control register W5.
_	_	Transfers the contents of timer control register W6 to register A.
_	_	Transfers the contents of register A to timer control register W6.
_	_	Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
_	_	Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of timer 1 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
-	_	Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of timer 2 to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2, and transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.
_	_	Transfers the high-order 4 bits of timer 3 to register B, and transfers the low-order 4 bits of timer 3 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3.
-	1	Transfers the high-order 4 bits of timer 4 to register B, and transfers the low-order 4 bits of timer 4 to register A.
- <	-	Transfers the contents of register B to the high-order 4 bits of timer 4 and timer 4 reload register R4L, and transfers the contents of register A to the low-order 4 bits of timer 4 and timer 4 reload register R4L.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 4 reload register R4H, and transfers the contents of register A to the low-order 4 bits of timer 4 reload register R4H.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1.
_	_	Transfers the contents of register B to the high-order 4 bits of timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 reload register R3.
-	_	Transfers the contents of timer 4 reload register R4L to timer 4.

N																	
Parameter						Ir	stru	ction	cod	le					umber of words	er of les	Function
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otat	cimal ion	Number words	Number o	T distion
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) \leftarrow 0 V12 = 0: NOP
eration	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0: (T2F) = 1 ? After skipping, (T2F) ← 0 V13 = 0: NOP
Timer operation	SNZT3	1	0	1	0	0	0	0	0	1	0	2	8	2	1	1	V20 = 0: (T3F) = 1 ? After skipping, (T3F) ← 0 $V20 = 0$: NOP
=	SNZT4	1	0	1	0	0	0	0	0	1	1	2	8	3	1	1	$V21 = 0$: (T4F) = 1 ? After skipping, (T4F) $\leftarrow 0$ V21 = 0: NOP
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)
	ОР0А	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0) ← (A)
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	(A2−A0) ← (P22−P20) (A3) ← 0
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	(P22−P20) ← (A2−A0)
	IAP3	1	0	0	1	1	0	0	0	1	1	2	6	3	1	1	(A) ← (P3)
	ОРЗА	1	0	0	0	1	0	0	0	1	1	2	2	3	1	1	(P3) ← (A)
	IAP6	1	0	0	1	1	0	0	1	1	0	2	6	6	1	1	(A) ← (P6)
	OP6A	1	0	0	0	1	0	0	1	1	0	2	2	6	1	1	(P6) ← (A)
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
Input/Output operation	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ (Y) = 0 to 6
do tndtr	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$ (D(Y)) \leftarrow 1 $ $ (Y) = 0 \text{ to } 6 $
int/Or	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	1	1	(D(Y)) = 0?
<u> </u>		0	0	0	0	1	0	1	0	1	1	0	2	В	1	1	(Y) = 0 to 6
	RCP	1	0	1	0	0	0	1	1	0	0	2	8	С	1	1	C ← 0
	SCP	1	0	1	0	0	0	1	1	0	1	2	8	D	1	1	C ← 1
	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	(A) ← (PU0)
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)
	TAPU1	1	0	0	1	0	1	1	1	1	0	2	5	Ε	1	1	(A) ← (PU1)
	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	Е	1	1	(PU1) ← (A)

Skip condition	Carry flag CY	Datailed description
V12 = 0: (T1F) = 1	-	Skips the next instruction when the contents of bit 2 (V12) of interrupt control register V1 is "0" and the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.
V13 = 0: (T2F) =1	-	Skips the next instruction when the contents of bit 3 (V13) of interrupt control register V1 is "0" and the contents of T2F flag is "1." After skipping, clears (0) to T2F flag.
V20 = 0: (T3F) = 1	-	Skips the next instruction when the contents of bit 0 (V2 ₀) of interrupt control register V2 is "0" and the contents of T3F flag is "1." After skipping, clears (0) to T3F flag.
V21 = 0: (T4F) =1	-	Skips the next instruction when the contents of bit 1 (V21) of interrupt control register V2 is "0" and the contents of T4F flag is "1." After skipping, clears (0) to T4F flag.
_	_	Transfers the input of port P0 to register A.
_	_	Outputs the contents of register A to port P0.
_	_	Transfers the input of port P1 to register A.
_	_	Outputs the contents of register A to port P1.
_	_	Transfers the input of port P2 to register A.
_	_	Outputs the contents of register A to port P2.
_	_	Transfers the input of port P3 to register A.
_	_	Outputs the contents of register A to port P3.
_	_	Transfers the input of port P6 to register A.
_	_	Outputs the contents of register A to port P6.
_	_	Sets (1) to all port D.
-	-	Clears (0) to a bit of port D specified by register Y.
-	-	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 However, $(Y)=0$ to 6	. (Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
_		Clears (0) to port C.
_	_	Sets (1) to port C. Transfers the contents of pull up control register DLIO to register A
_	_	Transfers the contents of pull-up control register PU0 to register A.
_	_	Transfers the contents of register A to pull-up control register PU0.
	_	Transfers the contents of pull-up control register PU1 to register A. Transfers the contents of register A to pull-up control register PU1.
_	_	Transfers the contents of register A to pull-up control register PU1.

Parameter	INL INS							ction							Jo	to	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otati	cimal on	Number of words	Number of cycles	Function
	TAK0	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	(A) ← (K0)
	TK0A	1	0	0	0	0	1	1	0	1	1	2	1	В	1	1	(K0) ← (A)
	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	(A) ← (K1)
ratior	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	(K1) ← (A)
t ope	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	Α	1	1	(A) ← (K2)
Jutpu	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	(K2) ← (A)
Input/Output operation	TFR0A	1	0	0	0	1	0	1	0	0	0	2	2	8	1	1	(FR0) ← (A)
<u> =</u>	TFR1A	1	0	0	0	1	0	1	0	0	1	2	2	9	1	1	(FR1) ← (A)
	TFR2A	1	0	0	0	1	0	1	0	1	0	2	2	Α	1	1	(FR2) ← (A)
	СМСК	1	0	1	0	0	1	1	0	1	0	2	9	Α	1	1	Ceramic resonator selected
ion	CRCK	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillator selected
perat	СҮСК	1	0	1	0	0	1	1	1	0	1	2	9	D	1	1	Quartz-crystal oscillator selected
Clock operation	TRGA	1	0	0	0	0	0	1	0	0	1	2	0	9	1	1	$(RG_0) \leftarrow (A_0)$
Ö	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$
	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR) \leftarrow (A)$
	TABAD	1	0	0	1	1	1	1	0	0	1	2	7	9	1	1	Q13 = 0: (B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2) Q13 = 1: (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0)
	TALA	1	0	0	1	0	0	1	0	0	1	2	4	9	1	1	$(A3, A2) \leftarrow (AD1, AD0)$ $(A1, A0) \leftarrow 0$
ion	TADAB	1	0	0	0	1	1	1	0	0	1	2	3	9	1	1	
A/D conversion operation	ADST	1	0	1	0	0	1	1	1	1	1	2	9	F	1	1	(ADF) ← 0 A/D conversion starting
/D convers	SNZAD	1	0	1	0	0	0	0	1	1	1	2	8	7	1	1	V22 = 0: (ADF) = 1 ? After skipping, (ADF) ← 0 V22 = 1: NOP
	TAQ1	1	0	0	1	0	0	0	1	0	0	2	4	4	1	1	(A) ← (Q1)
	TQ1A	1	0	0	0	0	0	0	1	0	0	2	0	4	1	1	$(Q1) \leftarrow (A)$
	TAQ2	1	0	0	1	0	0	0	1	0	1	2	4	5	1	1	(A) ← (Q2)
	TQ2A	1	0	0	0	0	0	0	1	0	1	2	0	5	1	1	$(Q2) \leftarrow (A)$
	TAQ3	1	0	0	1	0	0	0	1	1	0	2	4	6	1	1	(A) ← (Q3)
	TQ3A	1	0	0	0	0	0	0	1	1	0	2	0	6	1	1	(Q3) ← (A)

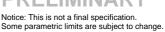
	>	
Skip condition	Carry flag CY	Datailed description
_	_	Transfers the contents of key-on wakeup control register K0 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K1 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K1.
_	_	Transfers the contents of key-on wakeup control register K2 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K2.
_	_	Transferts the contents of register A to port output format control register FR0.
_	_	Transferts the contents of register A to port output format control register FR1.
_	_	Transferts the contents of register A to port output format control register FR2.
-	_	Selects the ceramic resonator for main clock f(XIN).
_	_	Selects the RC oscillation circuit for main clock f(XIN).
_	_	Selects the quartz-crystal oscillation circuit for main clock f(XIN).
_	_	Transfers the contents of clock control regiser RG to register A.
_	_	Transfers the contents of clock control regiser MR to register A.
_	_	Transfers the contents of register A to clock control register MR.
-	_	In the A/D conversion mode (Q13 = 0), transfers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits (AD5–AD2) of register AD to register A. In the comparator mode (Q13 = 1), transfers the middle-order 4 bits (AD7–AD4) of register AD to register B, and the low-order 4 bits (AD3–AD0) of register AD to register A. (Q13: bit 3 of A/D control register Q1)
_	_	Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (AD3, AD2) of register A.
-		In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. (Q13 = bit 3 of A/D control register Q1)
_	-	Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started. (Q13 = bit 3 of A/D control register Q1)
V22 = 0: (ADF) = 1	_	When V22 = 0 : Skips the next instruction when A/D conversion completion flag ADF is "1." After skipping, clears (0) to the ADF flag. When the ADF flag is "0," executes the next instruction. (V22: bit 2 of interrupt control register V2)
_	_	Transfers the contents of A/D control register Q1 to register A.
-	_	Transfers the contents of register A to A/D control register Q1.
-	_	Transfers the contents of A/D control register Q2 to register A.
-	_	Transfers the contents of register A to A/D control register Q2.
-	-	Transfers the contents of A/D control register Q3 to register A.
_	_	Transfers the contents of register A to A/D control register Q3.



Parameter						In	stru	ction	cod	e					er of	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hexa	ade otati		Number of words	Number of cycles	Function
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	Transition to RAM back-up mode
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	POF instruction valid
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
ion	WRST	1	0	1	0	1	0	0	0	0	0	2	Α	0	1	1	(WDF1) = 1 ? After skipping, (WDF1) ← 0
Other operation	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled
her o	SRST	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	System reset occurrence
₫	SVDE	1	0	1	0	0	1	0	0	1	1	2	9	3	1	1	At RAM back-up: voltage drop detection circuit valid.
	RBK	0	0	0	1	0	0	0	0	0	0	0	4	0		1	$p6 \leftarrow 0$ when TABP p instruction is executed
	SBK	0	0	0	1	0	0	0	0	0	1	0	4	1	1	1	$p6 \leftarrow 1$ when TABP p instruction is executed
	TABSI	1	0	0	1	1	1	1	0	0	0	2	7	8	1	1	(B) ← (SI7–SI4) (A) ← (SI3–SI0)
	TSIAB	1	0	0	0	1	1	1	0	0	0	2	3	8	1	1	(SI7−SI4) ← (B) (SI3−SI0) ← (A)
				5	\	2											

Skip condition	Carry flag CY	Datailed description
_	_	No operation; Adds 1 to program counter value, and others remain unchanged.
-	_	Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction.
_	_	Makes the immediate after POF instruction valid by executing the EPOF instruction.
(P) = 1	-	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged.
(WDF1) = 1	_	Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
-	_	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
-	_	System reset occurs.
-	_	The voltage drop detection circuit is valid at RAM back-up mode when VDCE pin is "H".
_	_	Sets referring data area to pages 0 to 63 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.
_	_	Sets referring data area to pages 64 to 127 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.
-	_	Transfers the high-order 4 bits (SI7–SI4) of register SI to register B, and transfers the low-order 4 bits (SI3–SI0) of register SI to register A.
_	_	Transfers the contents of register B to the high-order 4 bits (SI7–SI4) of register SI, and transfers the contents of register A to the low-order 4 bits (SI3–SI0) of register SI.

INSTRUCTION CODE TABLE


1101	100	11011	OOL	<u> </u>	(DLL														
	09-D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	010000 010111	
D3-D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BMLA	RBK	TASP	A 0	LA 0	TABP 0	TABP 16	TABP 32	TABP 48	BML	BML	BL	BL	ВМ	В
0001	1	SRST	CLD	SZB 1	_	SBK	TAD	A 1	LA 1	TABP 1	TABP 17	TABP 33	TABP 49	BML	BML	BL	BL	ВМ	В
0010	2	POF	_	SZB 2	_	_	TAX	A 2	LA 2	TABP 2	TABP 18	TABP 34	TABP 50	BML	BML	BL	BL	ВМ	В
0011	3	SNZP	INY	SZB 3	_	_	TAZ	A 3	LA 3	TABP 3	TABP 19	TABP 35	TABP 51	BML	BML	BL	BL	ВМ	В
0100	4	DI	RD	SZD	-	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	TABP 36	TABP 52	BML	BML	BL	BL	ВМ	В
0101	5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	TABP 37	TABP 53	BML	BML	BL	BL	ВМ	В
0110	6	RC	_	SEAM	-	RTI	_	A 6	LA 6	TABP 6	TABP 22	TABP 38	TABP 54	BML	BML	BL	BL	ВМ	В
0111	7	SC	DEY	_	_	_	-	A 7	LA 7	TABP 7	TABP 23	TABP 39	TABP 55	BML	BML	BL	BL	ВМ	В
1000	8	ı	AND	_	SNZ0	LZ 0	_	A 8	LA 8	TABP 8	TABP 24	TABP 40	TABP 56	BML	BML	BL	BL	ВМ	В
1001	9	ı	OR	TDA	SNZ1	LZ 1		A 9	LA 9	TABP 9	TABP 25	TABP 41	TABP 57	BML	BML	BL	BL	ВМ	В
1010	Α	AM	TEAB	TABE	SNZI0	LZ 2	-	A 10	LA 10	TABP 10	TABP 26	TABP 42	TABP 58	BML	BML	BL	BL	ВМ	В
1011	В	AMC	_	_	SNZI1	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	TABP 43	TABP 59	BML	BML	BL	BL	ВМ	В
1100	С	TYA	СМА	_	_	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	TABP 44	TABP 60	BML	BML	BL	BL	ВМ	В
1101	D	-	RAR	_	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	TABP 45	TABP 61	BML	BML	BL	BL	ВМ	В
1110	E	ТВА	TAB	_	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	TABP 46	TABP 62	BML	BML	BL	BL	ВМ	В
1111	F	_	TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	TABP 47	TABP 63	BML	BML	BL	BL	ВМ	В

The above table shows the relationship between machine language codes and machine language instructions. D3-D0 show the low-order 4 bits of the machine language code, and D9-D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	1р	paaa	aaaa
BML	1p	paaa	aaaa
BLA	1p	pp00	pppp
BMLA	1p	pp00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

- A page referred by the TABP instruction can be switched by the SBK and RBK instructions.
- The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 127. (Ex. TABP $0 \rightarrow TABP 64$)
- The pages which can be referred by the TABP instruction after the RBK instruction is executed are 0 to 63.
- When the SBK instruction is not used, the pages which can be referred by the TABP instruction are 0 to 63.

INSTRUCTION CODE TABLE (continued)

1121	RUC	HON	COL)E 1 <i>F</i>	RFF	(con	tinue	ea)										
]/	D9-D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	TW3A	OP0A	T1AB	_	TAW6	IAP0	TAB1	SNZT1	-	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	ı	TW4A	OP1A	T2AB	ı	ı	IAP1	TAB2	SNZT2	_	_	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	_	TW5A	OP2A	ТЗАВ	-	TAMR	IAP2	TAB3	SNZT3	-	_	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	_	TW6A	ОРЗА	T4AB	ı	TAI1	IAP3	TAB4	SNZT4	SVDE	-	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	TK1A	_		TAQ1	TAI2	_	-	_		-	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	TQ2A	TK2A	_	TPSAB	TAQ2	_	_	TABPS	_		-	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	TQ3A	TMRA	OP6A		TAQ3	TAK0	IAP6	-	_		-	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	_	TI1A	_	T4HAB	-	TAPU0	-	-	SNZAD	T4R4L	(-)	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	ı	TI2A	TFR0A	TSIAB	ĺ	ı	Í	TABSI	_		_	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	TRGA	-	TFR1A	TADAB	TALA	TAK1	-	TABAD	-0	>	_	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	Α	_	_	TFR2A	-	-	TAK2	1	-		смск	TPAA	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	_	TK0A	_	TR3AB	TAW1	-	-	1	_	CRCK	-	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	_	-	_		TAW2	-		<u>_</u>	RCP	DWDT	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	-	_	TPU0A	-	TAW3	1		_	SCP	СҮСК	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	_	TPU1A	_	TAW4	TAPU1	_	_	_	_	_	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	_	_	TR1AB	TAW5	-	_	_	_	ADST	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D3-D0 show the loworder 4 bits of the machine language code, and D9-D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "--."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	1p	paaa	aaaa
BML	1p	paaa	aaaa
BLA	1р	pp00	pppp
BMLA	1p	pp00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditi	ons	Ratings	Uni
VDD	Supply voltage			-0.3 to 6.5	V
VI	Input voltage			-0.3 to VDD+0.3	V
	P0, P1, P2, P3, P6, D0–D6, RESET, XIN, VDCE				
/I	Input voltage CNTR0, CNTR1, INT0, INT1			-0.3 to VDD+0.3	V
/ I	Input voltage AIN0, AIN1			-0.3 to VDD+0.3	\ \
/o	Output voltage	Output transistors	in cut-off state	-0.3 to VDD+0.3	V
	P0, P1, P2, P3, P6, D0–D6, RESET, C				
'O	Output voltage CNTR0, CNTR1	Output transistors	in cut-off state	-0.3 to VDD+0.3	\
o'	Output voltage Xout			-0.3 to VDD+0.3	\
'd	Power dissipation	Ta = 25 °C	32P6U-A	300	m
opr	Operating temperature range			-20 to 85	°(
stg	Storage temperature range			-40 to 125	٥
		69,			
	AOUIN!	ed.			
		ed.			

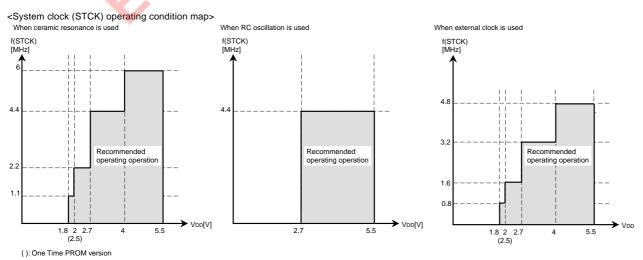
PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

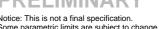
RECOMMENDED OPERATING CONDITIONS 1

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Condition	ins	Limits				
Symbol	Parameter	Conditio		Min.	Тур.	Max.	Unit	
VDD	Supply voltage	Mask ROM version	f(STCK) ≤ 6 MHz	4.0		5.5	V	
	(when ceramic resonator/on-chip		f(STCK) ≤ 4.4 MHz	2.7		5.5		
	oscillator is used)		f(STCK) ≤ 2.2 MHz	2.0		5.5		
			f(STCK) ≤ 1.1 MHz	1.8		5.5		
		One Time PROM version		4.0		5.5		
			f(STCK) ≤ 4.4 MHz	2.7	N	5.5		
			f(STCK) ≤ 2.2 MHz	2.5		5.5		
VDD	Supply voltage	f(STCK) ≤ 4.4 MHz		2.7		5.5	V	
	(when RC oscillation is used)							
VDD	Supply voltage	Mask ROM version	f(XIN) ≤ 50 kHz	2.0		5.5	V	
	(when quartz-crystal oscillator is used)	One Time PROM version	` '	2.5		5.5		
VRAM	RAM back-up voltage	Mask ROM version	at RAM back-up mode	1.6			V	
		One Time PROM version	at RAM back-up mode	2.0				
Vss	Supply voltage				0		V	
VIH	"H" level input voltage	P0, P1, P2, P3, P6, D0-D6	6, VDCE, XIN	0.8VDD		VDD	V	
VIH	"H" level input voltage	RESET		0.85VDD		VDD	V	
VIH	"H" level input voltage	CNTR0, CNTR1, INT0, IN	T1	0.85VDD		VDD	V	
VIL	"L" level input voltage	P0, P1, P2, P3, P6, D0-D0	6, VDCE, XIN	0		0.2VDD	V	
VIL	"L" level input voltage	RESET	0	0		0.3VDD	V	
VIL	"L" level input voltage	CNTR0, CNTR1, INT0, IN	T1	0		0.15VDD	V	
Iон(peak)	"H" level peak output current	P0, P1, D0-D6	VDD = 5 V			-20	mA	
,	·	CNTR0	VDD = 3 V			-10	1	
Iон(peak)	"H" level peak output current	C, CNTR1	VDD = 5 V			-30	mA	
,	·		VDD = 3 V			-15	1	
loн(avg)	"H" level average output current	P0, P1, D0-D6	VDD = 5 V			-10	mA	
	(Note)	CNTR0	VDD = 3 V			-5	1	
loн(avg)	"H" level average output current	C, CNTR1	VDD = 5 V			-20	mA	
, ,,	(Note)		VDD = 3 V			-10	1	
loL(peak)	"L" level peak output current	P0, P1, P2, P6	VDD = 5 V			24	mA	
. ,			VDD = 3 V			12	1	
loL(peak)	"L" level peak output current	P3, RESET	VDD = 5 V			10	mA	
" /	. () *		VDD = 3 V			4]	
loL(peak)	"L" level peak output current	D0-D6, C	VDD = 5 V			24	mA	
(1 /		CNTR0, CNTR1	VDD = 3 V			12	1	
loL(avg)	"L" level average output current	P0, P1, P2, P6	VDD = 5 V			12	mA	
3 (3)	(Note)		VDD = 3 V			6	1	
loL(avg)	"L" level average output current	P3, RESET	VDD = 5 V			5	mA	
(5.1.9)	(Note)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VDD = 3 V			2	1	
loL(avg)	"L" level average output current	D0-D6, C	VDD = 5 V			15	mA	
-(3/	(Note)	CNTR0, CNTR1	VDD = 3 V			7	1	
ΣIOH(avg)	"H" level total average current	D0-D6, C, CNTR0, CNTR				-60	mA	
(avg)	istoritation distribution	P0. P1	•			-60	†	
ΣloL(avg)	"L" level total average current	P2, D0–D6, RESET, CNTR	0 CNTR1			80	mA	
	L 10 voi totai avoiago ouitotit	1, Do Do, NEOLI, ONTIN	o, O		1	1	l, ,	

Note: The average output current is the average value during 100 ms.


Some parametric limits are subject to change.


RECOMMENDED OPERATING CONDITIONS 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter		Conditions			Limits		Unit
Cymbol	i didilietei		Conditions		Min.	Тур.	Max.	Offic
f(XIN)	Oscillation frequency	Mask ROM	Through mode	VDD = 4.0 to 5.5 V			6.0	MHz
	(with a ceramic resonator)	version		VDD = 2.7 to 5.5 V			4.4	
				VDD = 2.0 to 5.5 V			2.2	
				VDD = 1.8 to 5.5 V			1.1	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			6.0	
				VDD = 2.0 to 5.5 V			4.4	
				VDD = 1.8 to 5.5 V		<u></u>	2.2	
			Frequency/4, 8 mode	VDD = 2.0 to 5.5 V	C		6.0	
				VDD = 1.8 to 5.5 V			4.4	
		One Time PROM	Through mode	VDD = 4.0 to 5.5 V	5		6.0	
		version		VDD = 2.7 to 5.5 V			4.4	
				VDD = 2.5 to 5.5 V			2.2	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			6.0	1
				VDD = 2.5 to 5.5 V			4.4	
			Frequency/4, 8 mode	VDD = 2.5 to 5.5 V			6.0	1
f(XIN)	Oscillation frequency	VDD = 2.7 to 5.5 \	i				4.4	MHz
	(at RC oscillation) (Note)							
f(XIN)	Oscillation frequency	Mask ROM	Through mode	VDD = 4.0 to 5.5 V			4.8	MHz
	(with a ceramic resonator selected,	version	~0	VDD = 2.7 to 5.5 V			3.2	
	external clock input)			VDD = 2.0 to 5.5 V			1.6	
		4		VDD = 1.8 to 5.5 V			0.8	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			4.8	
				VDD = 2.0 to 5.5 V			3.2	
				VDD = 1.8 to 5.5 V			1.6	
			Frequency/4, 8 mode	VDD = 2.0 to 5.5 V			4.8	
				VDD = 1.8 to 5.5 V			3.2	
	4	One Time PROM	Through mode	VDD = 4.0 to 5.5 V			4.8	
		version		VDD = 2.7 to 5.5 V			3.2	
	-0-			VDD = 2.5 to 5.5 V			1.6	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			4.8	
				VDD = 2.5 to 5.5 V			3.2	1
			Frequency/4, 8 mode	VDD = 2.5 to 5.5 V			4.8	

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

RECOMMENDED OPERATING CONDITIONS 3

(Mask ROM version: $Ta = -20 \, ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

f(XIN)	ymbol Parameter Conditions				Limits		Unit
f(XIN)				Min.	Тур.	Max.	
	Oscillation frequency	Mask ROM version	VDD = 2.0 to 5.5 V			50	kHz
	(with a quartz-crystal oscillator)	One Time PROM version	VDD = 2.5 to 5.5 V			50	
f(CNTR)	Timer external input frequency	CNTR0, CNTR1				f(STCK)/6	Hz
tw(CNTR)		CNTR0, CNTR1		3/f(STCK)			S
	("H" and "L" pulse width)						
TPON	Power-on reset circuit	Mask ROM version	$VDD = 0 \rightarrow 1.8 \text{ V}$	-		100	μs
	valid supply voltage rising time	One Time PROM version	$VDD = 0 \rightarrow 2.5 V$		3	100	
		inounced	Rio				

ELECTRICAL CHARACTERISTICS 1

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Test of	Test conditions			Limits		
Cymbol	raiamotor	1031		Min.	Тур.	Max.	Unit	
Vон	"H" level output voltage	VDD = 5 V	IOH = -10 mA	3			V	
	P0, P1, D0-D6, CNTR0		IOH = -3 mA	4.1				
		VDD = 3 V	IOH = -5 mA	2.1				
			IOH = −1 mA	2.4				
Vон	"H" level output voltage	VDD = 5 V	IOH = -20 mA	3			V	
	C, CNTR1		Iон = −6 mA	4.1				
		VDD = 3 V	IOH = -10 mA	2.1				
			IOH = -3 mA	2.4				
Vol	"L" level output voltage	VDD = 5 V	IOL = 12 mA			2	V	
	P0, P1, P2, P6		IOL = 4 mA			0.9		
		VDD = 3 V	IOL = 6 mA			0.9		
			IOL = 2 mA			0.6	-	
Vol	"L" level output voltage	VDD = 5 V	IOL = 5 mA			2	V	
	P3, RESET	VDD = 3 V	IOL = 1 mA			0.9		
			IOL = 2 mA			0.9		
Vol	"L" level output voltage	VDD = 5 V	IOL = 15 mA			2	V	
	D ₀ -D ₆ , C, CNTR ₀ , CNTR ₁		IOL = 5 mA			0.9	-	
		VDD = 3 V	IoL = 9 mA			1.4		
			IOL = 3 mA			0.9	1	
IIH	"H" level input current	VI = VDD				2	μΑ	
	P0, P1, P2, P3, P6,	Port P6 selected	Port P6 selected				'	
	D0-D6, VDCE, RESET,							
	CNTR0, CNTR1,							
	INTO, INT1							
lıL	"L" level input current	VI = 0 V				-2	μΑ	
	P0, P1, P2, P3, P6,	P0, P1 No pull-up				_	μ	
	D0–D6, VDCE,	Port P6 selected						
	CNTR0, CNTR1,							
	INTO, INT1							
Rpu	Pull-up resistor value	VI = 0 V	VDD = 5 V	30	60	125	kΩ	
1110	P0, P1, RESET	• .	VDD = 3 V	50	120	250		
VT+ - VT_	Hysteresis	VDD = 5 V	1.55 0.		0.2	200	V	
VII VI	CNTR0, CNTR1, INT0, INT1	VDD = 3 V			0.2		•	
VT+ - VT_	Hysteresis RESET	VDD = 5 V			1		V	
V 1 . V .	Trysteresis Reserv	VDD = 3 V			0.4		1	
f(RING)	On-chip oscillator clock frequency	VDD = 5 V		200	500	700	kHz	
.(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S. S. Ip oddinator clock frequency	VDD = 3 V		100	250	400	2	
		Mask ROM version	VDD = 1.8 V	30	120	200	-	
Δf(XIN)	Frequency error	$VDD = 5 V \pm 10 \%, Ta$		30	120	±17	%	
AI(XIIV)	(with RC oscillation,	VDD = 3 V ± 10 /0, 1d	- 20 0			=17	/0	
	I '	VDD = 3 V ± 10 %, Ta	_ 25 °C			, 17	0/	
	error of external R, C not included)	ן עטט = ט v ± וט %, la י			±17	%		

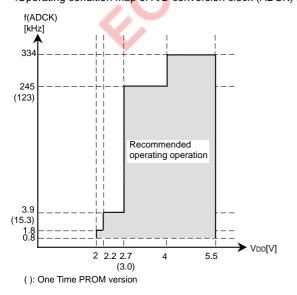
Note: When RC oscillation is used, use the external 30 or 33 pF capacitor (C).

ELECTRICAL CHARACTERISTICS 2

(Mask ROM version: $Ta = -20 \, ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: $Ta = -20 \, ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol		Parameter	Test conditions		Limits			Unit
Symbol		raiaillelei	rest conditions			Тур.	Max.	Office
IDD	Supply current	at active mode	VDD = 5 V	f(STCK) = f(XIN)/8		1.4	2.8	mA
		(with a ceramic resonator,	f(XIN) = 6 MHz	f(STCK) = f(XIN)/4		1.6	3.2	
		on-chip oscillator stop)		f(STCK) = f(XIN)/2		2.0	4.0	
				f(STCK) = f(XIN)		2.8	5.6	
			VDD = 5 V	f(STCK) = f(XIN)/8		1.1	2.2	mA
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		1.2	2.4	
				f(STCK) = f(XIN)/2	~	1.5	3.0	
				f(STCK) = f(XIN)		2.0	4.0	
			VDD = 3 V	f(STCK) = f(XIN)/8		0.4	0.8	mA
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4	JP	0.5	1.0	
				f(STCK) = f(XIN)/2		0.6	1.2	
				f(STCK) = f(XIN)		0.8	1.6	
		at active mode	VDD = 5 V	f(STCK) = f(XIN)/8		55	110	μΑ
		(with a quartz-crystal	f(XIN) = 32 kHz	f(STCK) = f(XIN)/4		60	120	1
		oscillator,		f(STCK) = f(XIN)/2		65	130	
		on-chip oscillator stop)		f(STCK) = f(XIN)		70	140	1
			VDD = 3 V	f(STCK) = f(XIN)/8		12	24	μΑ
			f(XIN) = 32 kHz	f(STCK) = f(XIN)/4		13	26	1
			70	f(STCK) = f(XIN)/2		14	28	
				f(STCK) = f(XIN)		15	30	
		at active mode	VDD = 5 V	f(STCK) = f(RING)/8		50	100	μΑ
		(with an on-chip oscillator,		f(STCK) = f(RING)/4		70	140	1
		f(XIN) stop)		f(STCK) = f(RING)/2		100	200	
				f(STCK) = f(RING)		150	300	
			VDD = 3 V	f(STCK) = f(RING)/8		10	20	μΑ
				f(STCK) = f(RING)/4		15	30	
				f(STCK) = f(RING)/2		20	40	
				f(STCK) = f(RING)		35	70	
		at RAM back-up mode	Ta = 25 °C			0.1	3	μΑ
		(POF instruction execution)	VDD = 5 V				10	
			VDD = 3 V				6	1

A/D CONVERTER RECOMMENDED OPERATING CONDITIONS


(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

Cymbol	Doromotor	Conditi	Conditions		Limits			
Symbol Parameter		Conditi	Min.	Тур.	Max.	Unit		
VDD	Supply voltage	Mask ROM version		2.0		5.5	V	
		One Time PROM version		3.0		5.5		
VIA	Analog input voltage			0		VDD	V	
f(ADCK)	A/D conversion clock	Mask ROM version	VDD = 4.0 to 5.5 V	0.8		334	kHz	
	frequency		VDD = 2.7 to 5.5 V	0.8		245	1	
	(Note)		VDD = 2.2 to 5.5 V	0.8		3.9	1	
			VDD = 2.0 to 5.5 V	0.8	N	1.8		
		One Time PROM version	VDD = 4.0 to 5.5 V	0.8		334	T	
			VDD = 3.0 to 5.5 V	0.8	0	123		

Note: Definition of A/D conversion clock (ADCK)

<Operating condition map of A/D conversion clock (ADCK) >

A/D CONVERTER CHARACTERISTICS

(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions			Limits		Unit
Symbol	raiailletei			Min.	Тур.	Max.	
_	Resolution					10	bits
_	Linearity error	$2.7 (3.0) V \le VDD \le 5.5 V (():$	One Time PROM version)			±2	LSE
		Mask ROM version	$2.2 \text{ V} \le \text{VDD} < 2.7 \text{ V}$			±4]
_	Differential non-linearity error	2.2 (3.0) V ≤ VDD ≤ 5.5 V (():	One Time PROM version)			±0.9	LSE
Vот	Zero transition voltage	Mask ROM version	VDD = 5.12 V	0	10	20	mV
			VDD = 3.072 V	0	7.5	15	1
			VDD = 2.56 V	0	7.5	15	1
		One Time PROM version	VDD = 5.12 V	0	15	30]
			VDD = 3.072 V	3	13	23]
VFST	Full-scale transition voltage	Mask ROM version	VDD = 5.12 V	5105	5115	5125	mV
			VDD = 3.072 V	3064.5	3072	3079.5	1
			VDD = 2.56 V	2552.5	2560	2567.5	1
		One Time PROM version	VDD = 5.12 V	5100	5115	5130	
			VDD = 3.072 V	3065	3075	3085]
_	Absolute accuracy	Mask ROM version	2.0 V ≤ VDD < 2.2 V			±8	LSB
	(Quantization error excluded)						
IADD	A/D operating current	VDD = 5 V			150	450	μА
	(Note 1)	VDD = 3 V			75	225	1
TCONV	A/D conversion time	f(XIN) = 6 MHz	0			31	μs
		f(STCK) = f(XIN) (XIN through	gh mode)				
		ADCK=INSTCK/6					
_	Comparator resolution					8	bits
_	Comparator error (Note 2)	Mask ROM version	VDD = 5.12 V			±20	mV
			VDD = 3.072 V			±15	1
			VDD = 2.56 V			±15	1
		One Time PROM version	VDD = 5.12 V			±30	1
			VDD = 3.072 V			±23	1
_	Comparator comparison time	f(XIN) = 6 MHz				4	μs
		f(STCK) = f(XIN) (XIN through	gh mode)				
		ADCK=INSTCK/6					

Logic value of comparison voltage Vref-

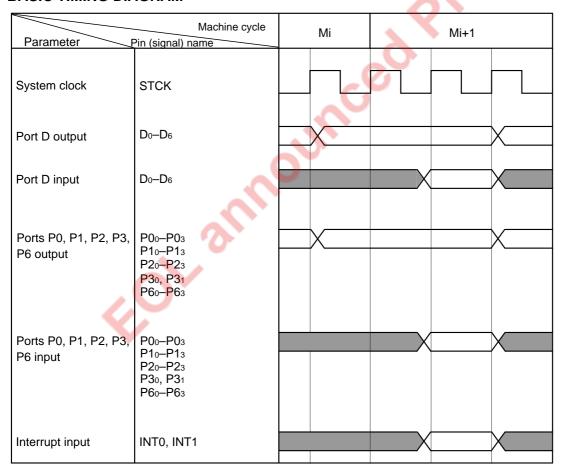
$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n = Value of register AD (n = 0 to 255)

Notes 1: When the A/D converter is used, IADD is added to IDD (supply current).

2: As for the error from the ideal value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage Vref which is generated by the built-in DA converter can be obtained by the following formula.

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS


(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			
Symbol	Falametei	rest conditions	Min.	lin. Typ. Max.		Unit	
VRST-	Detection voltage	Ta = 25 °C	1.4	1.5	1.6	V	
	(reset occurs) (Note 1)		1.1		1.9		
VRST+	Detection voltage	Ta = 25 °C	1.5	1.6	1.7	V	
	(reset release) (Note 2)		1.2		2.0		
VRST+ -	Detection voltage hysteresis			0.1		V	
VRST-							
IRST	Operation current (Note 3)	VDD = 5 V		50	100	μΑ	
		VDD = 3 V		30	60	1	
Trst	Detection time	$VDD \rightarrow (VRST - 0.1 \text{ V}) \text{ (Note 4)}$		0.2	1.2	ms	

Notes 1: The detected voltage (VRST-) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

- 2: The detected voltage (VRST+) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.
- 3: When the voltage drop detection circuit is used (VDCE pin = "H"), IRST is added to IDD (power current).
- 4: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST- 0.1 V].

BASIC TIMING DIAGRAM

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4583 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM

Table 21 shows the product of built-in PROM version. Figure 69 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

Table 21 Product of built-in PROM version

Part number	PROM size	RAM size	Package	ROM type
	(X 10 bits)	(X 4 bits)		
M34583EDFP	16384 words	384 words	32P6U-A	One Time PROM [shipped in blank]

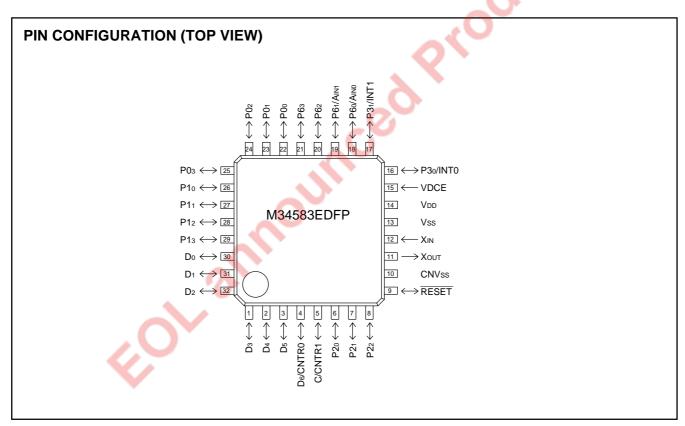


Fig. 69 Pin configuration of built-in PROM version

(1) PROM mode

The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM.

In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K.

Programming adapter is listed in Table 22. Contact addresses at the end of this data sheet for the appropriate PROM programmer.

• Writing and reading of built-in PROM

Programming voltage is 12.5 V. Write the program in the PROM of the built-in PROM version as shown in Figure 70.

(2) Notes on handling

- ①A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ②For the One Time PROM version shipped in blank, Renesas Technology Corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 71 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

(3) Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

Table 22 Programming adapter

Microcomputer	Name of Programming Adapter
M34583EDFP	PCA7442FP

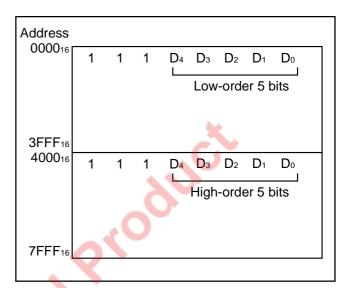


Fig. 70 PROM memory map

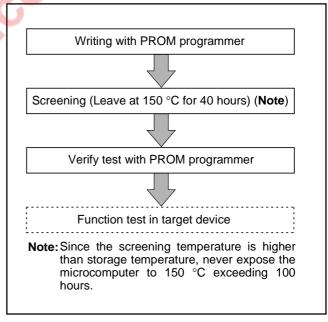
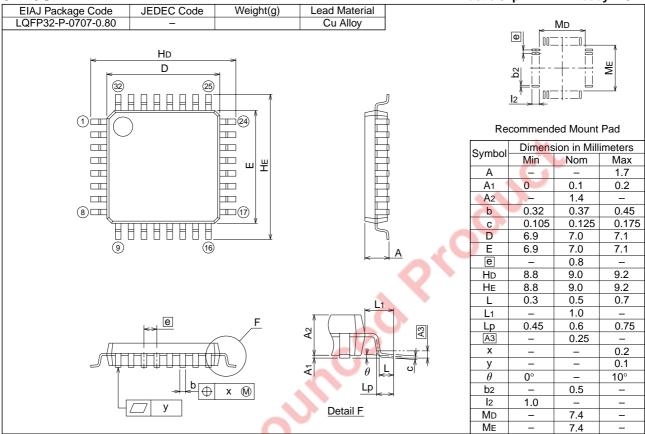



Fig. 71 Flow of writing and test of the product shipped in blank

PACKAGE OUTLINE

32P6U-A Recommended

Plastic 32pin 7X7mm body LQFP

REVISION HISTORY

4583 GROUP DATA SHEET

Rev.	Date		Description
1		Page	Summary
1.00	Feb. 18, 2003	_	First edition issued
	Apr. 15, 2003		Some values of the following table are revised. RECOMMENDED OPERATING CONDITIONS 1; • Supply voltage (when quartz-crystal oscillator is used)
		143	 RAM back voltage RECOMMENDED OPERATING CONDITIONS 3; Oscillation frequency (with a quartz-crystal oscillator)
		147	A/D CONVERTER RECOMMENDED OPERATING CONDITIONS; • Supply voltage
		148	 A/D conversion clock frequency A/D CONVERTER CHARACTERISTCS; Linearity error Differential non-linearity error
			Zero transition voltage Full-scale transition voltage
			Comparator error
2.01	Sep.16, 2003		Port block diagram (7): Period measurement mode added.
		24	Fig.17: Period measurement mode added.
		38	(12) PWM output function (C/CNTR1, timer 3, timer 4) revised.
		39	(14) Precautions: Timer 4 revised.
		52	Fig. 42: SRST instruction added .
		55	Note on voltage drop detection circuit added.
		56	Table 16 Port level revised.
		65	LIST OF PRECAUTIONS: Timer 4 revised.
	-	69	LIST OF PRECAUTIONS: Note on voltage drop detection circuit added.
3.00	Aug.06, 2004	. •	
		4	Description of RESET pin revised.
		32	Fig.26: Note 7 added.
		37	Some description revised.
		43	Some description revised.
		44	Fig.33: "DI" instruction added.
		70	Note on Power Source Voltage added.
		71	Note 2 : revised.

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials

 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system tha

- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001